Leistungskurs Mathematik **Thema: Analysis**

Aufgabe 1

Eine Forschergruppe beobachtet in den Tropen die natürliche Neubesiedelung von Seen bei Überschwemmungen durch bisher in diesen Seen nicht vorhandene Ruderfußkrebse.

Ihre Untersuchungen und theoretische Überlegungen legen nahe, dass für diesen Fall die *lokale Änderungsrate* der Krebsdichte im Wasser einer

Funktion des Typs
$$f_k(t) = k \cdot \frac{e^t}{(1 + e^t)^2}$$
, $k > 0$, $t \ge 0$ folgt,

d.h. $f_k(t)$ gibt zum Zeitpunkt t (in Monaten) die **Zuwachsrate** in $\frac{\text{Krebse} \, / \, \text{m}^3}{\text{Monat}}$ an.

Letzteres gilt näherungsweise, da ganzzahlige Funktionswerte die Ausnahme sind.

Zunächst sollen Sie diese Funktionenschar untersuchen und Ihre Ergebnisse dann im oben geschilderten Sachkontext deuten.

a) • Untersuchen Sie die Graphen der Funktionenschar f_k auf Schnittpunkte mit den Koordinatenachsen, Extrem- und Wendepunkte. Verzichten Sie bei den Wendepunkten auf den Nachweis des hinreichenden Kriteriums.

Zur Kontrolle:
$$f'_{k}(t) = \frac{k e^{t} (1 - e^{t})}{(1 + e^{t})^{3}}$$

■ Zeichnen Sie den Graphen der Funktion f_{4000} im Bereich $0 \le t \le 6$. (17 P)

b) Interpretieren Sie Ihre in Teilaufgabe a) gewonnenen Erkenntnisse über die Funktionen in Bezug auf die Entwicklung der Krebsdichte im Wasser. Untersuchen Sie ferner die langfristige Entwicklung der Dichte.

(7 P)

Leistungskurs Mathematik **Thema: Analysis**

c) Leiten Sie durch geeignete Integrationsmethoden eine Stammfunktion von f_k her.

d) Bei einem der beobachteten Seen ergaben die Untersuchungen durch Kontrollentnahmen, dass drei Monate nach dem ersten Auftauchen der Ruderfußkrebse in diesem See von einer Dichte von 32 000 Krebsen pro Kubikmeter auszugehen war.

Berechnen Sie aus dieser Beobachtung den Parameter k der Modellierung (auf Hunderter gerundet) und bestimmen Sie, wie groß mit diesem Modell die **Dichte** der Krebse in dem See nach einem Viertelmonat, d.h. nach einer Woche, gewesen war (ebenfalls auf Hunderter gerundet).

(3 P)

Thema: Analysis

	Erwartete Leistung			ng ng
				III
a)	Schnittpunkte mit den Koordinatenachsen: Die Funktionen haben keine Nullstellen, da die Zähler e ^t in den Funktionsgleichungen nie Null werden und k>0 gilt.	1		
	Es gilt $f_k(0) = \frac{k}{4}$, daher ist der Schnittpunkt mit der y-Achse P(0 $\frac{k}{4}$).	1		
	Extrempunkte:			
	Berechnung der ersten Ableitung mithilfe der Quotientenregel:			
	$f'_{k}(t) = \frac{k e^{t} (1+e^{t})^{2} - 2k e^{t} (1+e^{t}) e^{t}}{(1+e^{t})^{4}} = \frac{k e^{t} (1-e^{t})}{(1+e^{t})^{3}}$	2		
	Berechnung der zweiten Ableitung: $u(t) = k e^{t} (1 - e^{t}) \qquad v(t) = (1 + e^{t})^{3}$ $u'(t) = k e^{t} (1 - 2e^{t}) \qquad v'(t) = 3 e^{t} (1 + e^{t})^{2}$	1		
	$f_k''(t) = \frac{k e^t (1 - 2e^t) (1 + e^t)^3 - 3k e^{2t} (1 - e^t) (1 + e^t)^2}{(1 + e^t)^6}$			
	$f_k''(t) = \frac{k e^t (1 - 4e^t + e^{2t})}{(1 + e^t)^4}$		2	
	Notwendig für einen Extrempunkt bei t_E ist $f'_k(t_E) = 0$, daher der Ansatz			
	$\frac{k e^{t} (1 - e^{t})}{(1 + e^{t})^{3}} = 0.$	1		
	Es gilt $\frac{k \ e^t (1-e^t)}{(1+e^t)^3} = 0 \Leftrightarrow 1-e^t = 0 \Leftrightarrow t=0$. Der Nenner ist immer ungleich Null.	1		
	Hinreichend für einen Extrempunkt bei t_E ist $f_k'(t_E)=0$ und $f_k''(t_E)\neq 0$. Es ist $f_k''(0)=-\frac{k}{8}<0$, weil k>0 ist. Daher ist P(0 $\frac{k}{4}$) ein Hochpunkt.	1		

Thema: Analysis

Wendepunkt:

Notwendig für einen Wendepunkt bei $t_{\rm W}$ ist $f_{\rm k}^{\prime\prime}(t_{\rm W})=0\,$, daher der Ansatz

$$f_k''(t) = \frac{k \ e^t \left(1 - 4 e^t + e^{2t} \right)}{\left(1 + e^t \right)^4} = 0 \ . \ \text{Es ist}$$

1

$$f_k''(t) = 0 \iff 1 - 4e^t + e^{2t} = 0.$$

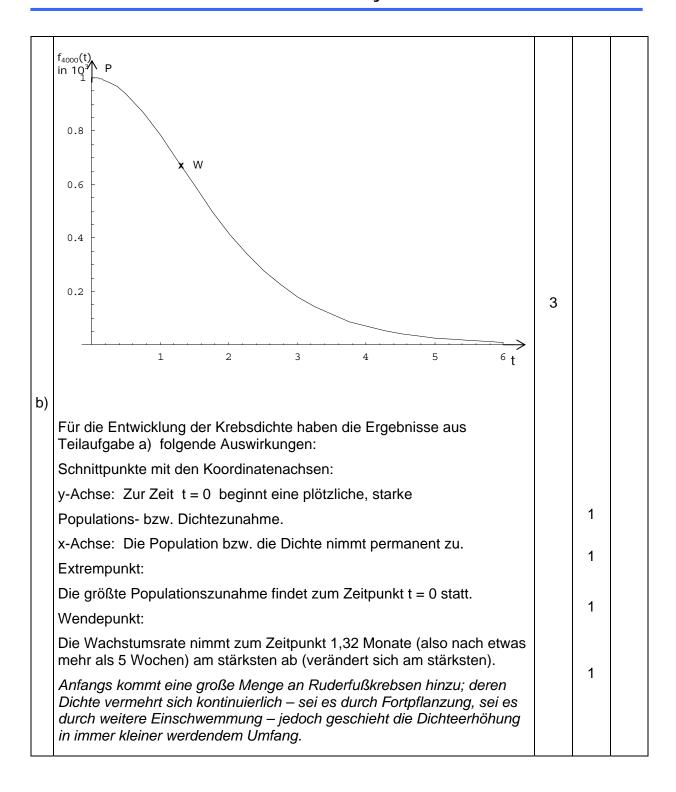
Mit
$$u := e^t$$
 folgt $u^2 - 4u + 1 = 0$.

1

Die quadratische Gleichung hat die Lösungen $\ u_1=2+\sqrt{3}\$ und $\ u_2=2-\sqrt{3}$. Da $\ t\geq 0$ vorausgesetzt wird, erhält man nur die Lösung $\ t_W=\ln\!\left(2+\sqrt{3}\;\right)\approx 1{,}32\,.$

Es ist $f_k(\ln(2+\sqrt{3})) = k \frac{2+\sqrt{3}}{(3+\sqrt{3})^2} = \frac{k}{6}$. Somit ist

$$W\!\!\left(\,\ln(\,2\!+\!\sqrt{\!3}\,\,)\,\,|\,\,\frac{k}{6}\right) \,\text{oder gerundet}\;\;W(\text{1,32}\mid\text{0,17 k})\;.$$


1

1

Wertetabelle:

t	0	1	1,32	2	3	4	5	6
f ₄₀₀₀ (t)	1000	786	665	420	181	71	27	10

Thema: Analysis

Thema: Analysis

	Die langfristige Entwicklung der Dichte wird beschrieben durch das Verhalten der Funktionen für $t \to \infty$.			
	$\lim_{t\to\infty}\left(\frac{k\ e^t}{(1+e^t)^2}\right)=\lim_{t\to\infty}\left(\frac{k}{e^t}\right)=0\ .$		2	
	Damit strebt die Wachstumsrate gegen Null und die Population bzw. Dichte bleibt dann nahezu konstant.		1	
c)	Stammfunktion:			
	Integration durch Substitution:			
	$u(t)$: = $(1 + e^t)$, dann ist $u'(t) = e^t = \frac{du}{dt} \implies dt = \frac{du}{e^t}$			
	$\int f_k(t) dt = \int \frac{k e^t}{u^2} \frac{du}{e^t} = \int \frac{k}{u^2} du = -\frac{k}{u} + C = -\frac{k}{1 + e^t} + C$		3	
d)				
	$D_k(t)$ beschreibe die Krebsdichte t Monate nach Beginn der Besiedelung.			
	Es ist $D_k(t) = F_k(t) - F_k(0)$. Mit der Stammfunktion aus Teil c) ergibt sich:			
	$D_k(t) = \frac{-k}{1 + e^t} + \frac{k}{2} = k\left(\frac{1}{2} - \frac{1}{1 + e^t}\right). \text{k bestimmt sich demnach aus}$			
	der Gleichung: $32000 = k\left(\frac{1}{2} - \frac{1}{1 + e^3}\right)$, woraus gerundet k = 70 700			
	folgt.			
	Die Population bzw. Dichte nach einem Viertelmonat betrug dann mit			
	$D_{70700}(0,25) = 70700 \left(\frac{1}{2} - \frac{1}{1 + e^{0,25}} \right)$ etwa 4400 Krebse pro m ³ .			3
		12	15	3

Leistungskurs Mathematik **Thema: Analysis**

Aufgabe 2

Gegeben ist eine Schar von Funktionen f_a durch die Funktionsgleichung $f_a(x) = \ln(a+x^2) \text{ mit } a \in IR$

Die Graphen der Schar werden mit G_a bezeichnet.

- a) Geben Sie den maximalen Definitionsbereich von f_a in Abhängigkeit von a an.
 - Untersuchen Sie G_a auf Symmetrie, gemeinsame Punkte mit den Koordinatenachsen, Extrempunkte und Wendepunkte. Verzichten Sie bei den Wendepunkten auf den Nachweis des hinreichenden Kriteriums. (Achten Sie auf Fallunterscheidungen.)

Zeichnen Sie G_0 und $G_{0,25}$ in ein kartesisches Koordinatensystem.

(17 P)

b) Für 0 < a < 0.5 sind die Punkte $A(\sqrt{a} \mid \ln(2a))$, $B(-\sqrt{a} \mid \ln(2a))$ und O(0/0) Eckpunkte eines Dreiecks, das um die y-Achse rotiert. Bestimmen Sie den Wert a, für den der Rauminhalt des entstehenden Kegels maximal wird.

(5 P)

c) Es sei a=0. Der Graph G_0 , die x-Achse und die Gerade mit der Gleichung $x=e^2$ schließen eine Fläche ein. Berechnen Sie den Inhalt dieser Fläche und zeigen Sie dabei durch eine geeignete Integrationsmethode, dass $\int \ln(x) dx = (x \cdot \ln(x) - x) + C$ gilt.

(5 P)

d) Es werden die Graphen der Funktionen $f_{\scriptscriptstyle e}$ und g mit den Funktionsgleichungen

$$f_e(x) = \ln(e + x^2)$$
; $x \in \mathbb{R}$, $x \ge 0$ und $g(x) = \sqrt{e^x - e}$; $x \in \mathbb{R}$, $x \ge 1$ betrachtet.

Zeigen Sie, dass die Graphen der Funktionen f_e und g spiegelbildlich zueinander liegen.

(3 P)

Thema:	Ana	lvsis
o a .	,a	.,

	Erwartete Leistung		ıordnu	_
	Liwartete Leistung	I	II	III
	Definitionsbereich: Der Definitionsbereich der Logarithmusfunktion ist IR^+ , daher muss $a+x^2$ positiv sein. Daraus folgt $D_{f_a} = IR$ für $a>0$,			
	$D_{f_a} = IR \setminus \{0\} \text{ für } a = 0,$ $D_{f_a} = \left\{ x \mid x < -\sqrt{-a} \lor x > \sqrt{-a} \right\}$		1	
	bzw. $D_{f_a} = \{x \mid x > \sqrt{-a}\} \text{ für } a < 0.$		1	
	Symmetrie: Ich untersuche die Beziehung $f_a(-x) = f_a(x)$. $f_a(-x) = \ln(a + (-x)^2) = \ln(a + x^2) = f_a(x)$. Also liegt eine Symmetrie zur y-Achse vor.	1		
	Achsenschnittpunkte: Die Graphen G_a schneiden die y-Achse bei $f_a(0) = \ln(a)$ für $a > 0$. Für $a \le 0$ gibt es keine Schnittpunkte. Für Schnittpunkte mit der x-Achse gilt $f_a(x_N) = 0$. Aus $\ln(a+x^2) = 0$ folgt $a+x^2 = 1$. Lösungen sind $x_{N_1} = \sqrt{1-a}$	1		
1	und $x_{N_2} = -\sqrt{1-a}$ für $a \le 1$, d.h. für a=1 gibt es nur einen "Schnittpunkt" $N_1(0/0)$. Für a>1 gibt es keine Schnittpunkte.		2	
,	Extrempunkte: Ableitungen $f_a'(x) = \frac{2x}{a+x^2},$	1		
	$f_a''(x) = \frac{2(a-x^2)}{(a+x^2)^2}$ Notwendig für das Vorliegen eines Extremums ist, dass		1	
	$f_a^{'}(x_E) = 0$ ist. Daraus folgt $x_E = 0$ und a $\neq 0$. Für a=0 existieren keine lokalen Extrema.		1	
	Es ist noch eine hinreichende Bedingung, z. B. $f_a'(x_E) = 0$ und $f_a''(x_E) \neq 0$ zu untersuchen. $f_a''(0) = \frac{2}{a}$, a $\neq 0$	1		
	Fallunterscheidung: Für a>0 ist $f_a''(0)>0$, d.h. an der Stelle 0 liegt ein lokales Minimum vor. Der Funktionswert ist ln(a).		1	

Leistungskurs Mathematik **Thema: Analysis**

	ndepunk									
	-	-		ir das Vo	rliegen e	eines				
	ndepunk			_						
Es is	st die Gl	eichung	$\frac{2(a-1)}{(a+1)}$	$\frac{(x^2)^2}{(x^2)^2} = 0$ z	u lösen	. Es fo	olgt			
X_{W_1}	$= +\sqrt{a}$	und	x _{W2} =	$-\sqrt{a}$ für	a > 0,	weil dar	nn der		1	
				_{,2} ungleic						
				daher W_1	$(+\sqrt{a}/\ln$	$\mathbf{u}(2a))\mathbf{u}$	nd		1	
W 2($-\sqrt{a}/\ln$	(2a)) f	ür <i>a</i> >	0.						
Zeic	hnen de	er Graph	nen							
2/0	92		93	у	89		*1	,		
63	⊕e	e.	96	+3		08	*	,		
							And the same of th			
18		10	1%	- 2	3/7		/.	:		
207										
200	974		1	†1	. //		\$P	ŝ		
-	-	1	1		_//_	-		×		
4	-3	-2	-1		//1	2	3	2	3	
68	Qe.	18		1-1/	/ •	68	90	,		
				\ \ \ /						
130	37	Đ.	15	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	87	8 %	25	1		
28	384	13	*	\	184	18	蒙	ì		
\$10.	27	a	85	11/4	622	3	45	\$		
17-	al	la D		4						
	el maxir 1	malen R $a \ln(2a)$		haltes $r=\sqrt{a}$	_					

Thema: Analysis

Für die Bestimmung der Extremstelle werden die 1. und die 2. Ableitung			
$V'(a) = -\frac{1}{3}\pi(\ln(2a)+1)$ und			
$V''(a) = -\frac{1}{3}\pi \frac{1}{a}$ benötigt.		1	
Notwendig für das Vorliegen eines Extremums ist, dass $V'(a_E) = 0$ ist. Daraus folgt $\ln(2a_E) + 1 = 0$,			
somit ergibt sich $a_E = \frac{1}{2\rho}$.		1	
Es ist noch eine hinreichende Bedingung, z.B. $V'(a_E) = 0$ und $V''(a_E) \neq 0$ zu untersuchen.			
Da $V''(\frac{1}{2e}) < 0$, nimmt V für $a_E = \frac{1}{2e}$ ein Maximum an.		1	
c) Berechnung des unbestimmten Integrals durch partielle Integration:			
$\int \ln(x)dx = \int 1 \cdot \ln(x)dx = x \cdot \ln(x) - \int x \cdot \frac{1}{x}dx = x \ln(x) - x + C$	3		
Berechnung der Maßzahl des Flächeninhaltes			
$A = \int_{1}^{e^{2}} \ln(x^{2}) dx = 2 \cdot \int_{1}^{e^{2}} \ln(x) dx = 2 \cdot [x \ln(x) - x]_{1}^{e^{2}} = 2e^{2} + 2$		2	
d) Die Idee zur Lösung entsteht möglicherweise über die grafische Darstellung von f_e und g .			
Es ist zu vermuten, dass die Graphen der Funktionen spiegelbildlich zur 1. Winkelhalbierenden liegen. Dazu ist zu zeigen: g ist Umkehrfunktion zu f_e .			
$f_e: y = \ln(e + x^2)$			
$e^{y} = e + x^{2}$ $\Rightarrow x = \sqrt{e^{y} - e}, x \ge 0$			
$\Rightarrow x = \sqrt{e^x - e}, \ x \ge 0$ Vertauschen der Elemente von Definitionsbereich und			3
Wertebereich ergibt $g: y = \sqrt{e^x - e}$; $x \in IR$; $x \ge 1$.			
	12	15	3

Leistungskurs Mathematik Thema: Analytische Geometrie

Aufgabe 3

Gegeben sind in einem kartesischen Koordinatensystem die Gerade g mit der

Gleichung
$$g: \vec{x} = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
 und die Gerade h durch die Punkte $A(1/3/-1)$ und

B(3/-1/3). E sei die Spiegelebene von A zu B.

- a) Zeigen Sie, dass sich die Geraden *g* und *h* schneiden und bestimmen Sie den Schnittwinkel. Ermitteln Sie die Gleichungen der Kugeln, die die folgenden drei Bedingungen zugleich erfüllen:
 - die Mittelpunkte liegen auf der Geraden g,
 - der Radius beträgt 3 LE und
 - die Ebene E ist Tangentialebene [Kontrolle: E: $x_1 - 2 x_2 + 2 x_3 = 2$]. (12 P)
- b) Die Gerade g und die Ebene E schneiden sich im Punkt D.

 Bestimmen Sie den Abstand des Mittelpunktes der Strecke \overline{AD} zur Geraden h.
- c) Gegeben ist die Ebenenschar F_k mit $F_k: (k-1)x_1-2x_2+kx_3-k=0$ und $k\in IR\setminus\{0\}$. Untersuchen Sie F_k auf Schnittpunkte S_1 , S_2 und S_3 mit den Koordinatenachsen und diskutieren Sie eventuelle Lagebesonderheiten. (5 P)
- d) Es ist bekannt, dass ein reelles k > 1 existiert, für welches das Volumen V der Pyramide $OS_1S_2S_3$ mit den Punkten aus Teilaufgabe c) minimal wird. Bestimmen Sie dieses k. [Falls Sie in Teilaufgabe c) keine Punkte ermitteln konnten, verwenden Sie alternativ

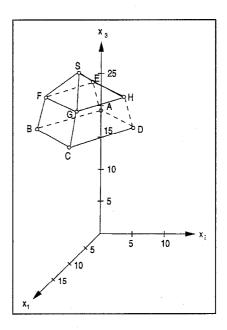
$$S_1\left(\frac{k}{2} \mid 0 \mid 0\right); \ S_2\left(0 \mid \frac{k}{k-1} \mid 0\right); \ S_3\left(0 \mid 0 \mid 2\right).$$
 Diese Punkte

stimmen nicht mit den von Ihnen errechneten überein.]

(5 P)

			ordni	_
	Erwartete Leistung			
a)	(2) (1)	I	II	III
	Es sind g und h gegeben durch $g: \vec{x} = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix} + s \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ und			
	$h: \vec{x} = \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ -4 \\ 4 \end{pmatrix}.$	1		
	Da $A(1 3 -1)$ auf g liegt (für $s=-1$), schneiden sich die Geraden g und h.	1		
	Für den Schnittwinkel α zwischen g und h gilt			
	$\cos \alpha = \frac{\begin{vmatrix} 1 \\ 0 \\ 1 \end{vmatrix} \cdot \begin{vmatrix} 2 \\ -4 \\ 4 \end{vmatrix}}{\sqrt{1^2 + 1^2} \cdot \sqrt{2^2 + (-4)^2 + 4^2}} = \left \frac{2+4}{\sqrt{72}} \right = \frac{1}{\sqrt{2}} = \frac{1}{2}\sqrt{2} \Rightarrow \alpha = 45^{\circ}.$	2		
	Bestimmung der Gleichungen für die Kugeln, welche die drei Bedingungen erfüllen			
	Gesucht sind alle Punkte auf g, die den Abstand $3\mathrm{LE}$ zur Ebene E haben.			
	Für die Spiegelebene E von A zu B gilt: Der Vektor \overline{AB} ist Richtungsvektor der Gerade h (s.o.) und Normalenvektor der Ebene E			
	(also auch $\frac{1}{2}\overrightarrow{AB} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$) und der Mittelpunkt P der Strecke \overline{AB} mit			
	$\overrightarrow{OP} = \overrightarrow{OA} + \frac{1}{2}\overrightarrow{AB} = \begin{pmatrix} 2\\1\\1 \end{pmatrix}$ liegt in der Ebene.			
	Es folgt $E: \begin{bmatrix} \vec{x} - \begin{pmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \end{bmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = 0.$	3		
	Unter Verwendung der Hesse'schen Normalform ergibt sich als Abstandsansatz			

			ung ung	
	Erwartete Leistung			
	$\begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix} + s \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \end{bmatrix} \cdot \frac{1}{\sqrt{9}} \cdot \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = 3$	1		
	$\Leftrightarrow \begin{bmatrix} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \end{bmatrix} \cdot \frac{1}{3} \cdot \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = 3$			
	$\left \Leftrightarrow \left \frac{1}{3} \cdot \left(-6 + 3s \right) \right = 3 \Leftrightarrow s = 5 \lor s = -1.$		2	
	Durch Einsetzen der ermittelten Werte in den Geradenterm erhält man $\overrightarrow{OM_1} = \begin{pmatrix} 7 \\ 3 \\ 5 \end{pmatrix} \text{ und } \overrightarrow{OM_2} = \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix} \text{ und somit für die gesuchten}$			
	$\begin{pmatrix} 5 \end{pmatrix} \begin{pmatrix} -1 \end{pmatrix}$ Kugelgleichungen			
	$K_1 : \begin{bmatrix} \vec{x} - \begin{pmatrix} 7 \\ 3 \\ 5 \end{bmatrix} \end{bmatrix}^2 = 9 \text{und} K_2 : \begin{bmatrix} \vec{x} - \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix} \end{bmatrix}^2 = 9.$	2		
b)	D wird berechnet durch Einsetzen des Geradenterms von g in die Ebenengleichung von E :			
	$\begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix} + s \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = 0 \Leftrightarrow \begin{bmatrix} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} + s \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = 0$			
	\Leftrightarrow $-6+3s=0 \Leftrightarrow s=2$. Das Einsetzen in die Geradengleichung ergibt $D(4 3 2)$.	2		
	Damit ist der Mittelpunkt der Strecke \overline{AD} dann $M_{AD}(2,5 \mid 3 \mid 0,5)$.		1	
	Die orthogonale Ebene E_1 zur Geraden h , die M_{AD} enthält, ist gegeben durch			
	$\begin{bmatrix} \mathbf{E}_1 : \begin{bmatrix} \vec{\mathbf{x}} - \begin{pmatrix} 2,5 \\ 3 \\ 0,5 \end{bmatrix} \end{bmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = 0.$		1	


	Erwartete Leistung			
				III
	Das Einsetzen des Geradenterms von h in die Normalenform von E_1 liefert die Gleichung $\begin{bmatrix} 1+t \\ 3-2t \\ -1+2t \end{bmatrix} - \begin{pmatrix} 2,5 \\ 3 \\ 0,5 \end{bmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = 0$. Daraus ergibt sich		1	
	$-1.5+t+4t-3+4t=0 \Leftrightarrow 9t=4.5 \Leftrightarrow t=\frac{1}{2}$. Damit ist der Schnittpunkt F der Geraden h mit der Ebene E_1 $F(1.5 \mid 2 \mid 0)$.	2	2	
	Für den Abstand d des Punktes M_{AD} zum Punkt F folgt $d = \left \overrightarrow{FM}_{AD} \right = \begin{vmatrix} 2.5 \\ 3 \\ 0.5 \end{vmatrix} - \begin{pmatrix} 1.5 \\ 2 \\ 0 \end{vmatrix} = \begin{vmatrix} 1 \\ 1 \\ 0.5 \end{vmatrix} = \sqrt{1+1+0.25} = 1.5.$		1	
c)	Schnittpunkte der Ebenenschar mit der			
	1.Koordinatenachse: Ich setze x_2 , $x_3 = 0$. Dann folgt			
	$(k-1)x_1 - k = 0 \Leftrightarrow x_1 = \frac{k}{k-1} \Rightarrow S_1\left(\frac{k}{k-1}\big 0\big 0\right).$		1	
	Für $k = 1$ existiert kein Schnittpunkt mit der x_1 -Achse, d.h. F_1 ist parallel zur x_1 -Achse.		1	
	2. Koordinatenachse: Ich setze x_1 , $x_3 = 0$. Dann folgt $-2x_2 - k = 0 \Leftrightarrow x_2 = -\frac{k}{2} \Rightarrow S_2\left(0 \mid \frac{-k}{2} \mid 0\right).$		1	
	3. Koordinatenachse: Ich setze x_1 , $x_2 = 0$. Dann folgt $k x_3 - k = 0 \Leftrightarrow x_3 = 1 \Rightarrow S_3(0 \mid 0 \mid 1)$.		1	
	Der Schnittpunkt mit der x_3 -Achse ist unabhängig von k .		1	

			ordn	_
	Erwartete Leistung	ВС	WCIL	ang
		I	II	III
d)	Gesucht ist der reelle Wert $k > 1$, für den $V(k)$ minimal ist.			
	Das Volumen einer Pyramide ist $\frac{1}{6} \cdot \left \left(\overrightarrow{OS_1} \times \overrightarrow{OS_2} \right) \cdot \overrightarrow{OS_3} \right $.			
	$V(k) = \frac{1}{6} \cdot \left \left(\overrightarrow{OS_1} \times \overrightarrow{OS_2} \right) \cdot \overrightarrow{OS_3} \right $			
	$ = \frac{1}{6} \cdot \left \left(\frac{\frac{k}{k-1}}{0} \times \begin{pmatrix} 0 \\ -\frac{k}{2} \\ 0 \end{pmatrix} \right) \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right = \frac{1}{6} \cdot \left \begin{pmatrix} 0 \\ 0 \\ 0 \\ -\frac{k^2}{2(k-1)} \right \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right = \frac{1}{6} \cdot \left -\frac{k^2}{2(k-1)} \right $			
	$=\frac{k^2}{12k-12}$		2	
	Zur Überprüfung der notwendigen Bedingung für die Existenz von lokalen Extrema verwende ich die 1. Ableitung von V.			
	$V'(k) = \frac{2k \cdot (12k - 12) - k^2 \cdot 12}{(12k - 12)^2} = \frac{12k^2 - 24k}{(12k - 12)^2}$			
	Es folgt $V'(k) = 0$, also $12k^2 - 24k = 0$ und somit $k = 0 \lor k = 2$. Da $k > 1$ sein muss, folgt $k = 2$.			
	Weil nur ein $k > 1$ die notwendige Bedingung erfüllt, muss bei $k = 2$ das Volumen minimal sein.			3
		12	15	3

Thema: Analytische Geometrie

Aufgabe 4

Ein Kirchturmdach besteht wie in der nebenstehenden Abbildung dargestellt aus einem Pyramidenstumpf mit quadratischer Grund- und Deckfläche, auf die eine gerade Pyramide aufgesetzt ist. Als Eckpunkte sind die Punkte A(0|0|19), B(6|-6|19), C(12|0|19), D(6|6|19), F(6|-4|23), G(10|0|23) und S(6|0|27) bekannt. (1 m entspricht einer Längeneinheit.)

a) Geben Sie die Koordinaten der Punkte E und H an! Bestimmen Sie eine Koordinatengleichung der Ebene E_1 , welche die Dachfläche FGS enthält.

Welchen Winkel schließt die Ebene E_2 durch die Punkte B, C, G und F mit der Ebene E_1 ein?

(Falls Sie keine Ebenengleichung für die Ebene E_1 erhalten, nutzen Sie E_1 : $x_1 - x_2 + x_3 = 33$.)

(10 P)

Zur Vorbereitung des Jubiläumskirchweihfestes diskutiert der Kirchenvorstand mehrere außergewöhnliche Vorschläge. Ein Vorschlag sieht ein großes Dreieckssegel vor, das von der Kirchturmspitze bis zum Boden reichen und direkt auf der Dreiecksfläche FGS aufliegen soll.

- b) Zur Befestigung des Dreieckssegels verlaufen Spannseile von S über F bzw. von S über G gradlinig zum Boden.
 - Berechnen Sie deren Verankerungspunkte V_F und V_G am Boden. [Kontrolle V_G (33 | 0 | 0)]
 - Berechnen Sie den Flächeninhalt der dreieckigen Segelfläche V_FV_GS . (7 P)

Thema: Analytische Geometrie

c) Von der Ecke T($6 \mid -6 \mid 0$) des Turmes direkt unterhalb von B am Boden ausgehend soll ein Sicherungsdrahtseil zum Spannseil SV_G gespannt und dort senkrecht befestigt werden. Entscheiden Sie, ob sich eine Strebe, die entlang der Geraden

$$g: \vec{x} = \begin{pmatrix} 9 \\ -3 \\ 0 \end{pmatrix} + r \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \text{ verläuft, und das Sicherungsdrahtseil stören}$$

und bestimmen Sie ggf. den Abstand zwischen der Strebe und dem Drahtseil.

d) Auf der Grundfläche *ABCD* des Kirchendaches befinden sich Verankerungspunkte P_n mit P_n(6 | n | 19) und

 $n \in \{\text{-} 5 \text{ ; -} 4 \text{ ; ... ; 4 ; 5}\}$. Von der Spitze des Kirchendaches S soll ein Kabel zu einem der Verankerungspunkte P_n gezogen werden. Geben Sie eine Formel für die Schar der Geraden g_n an, auf denen die Strecken $\overline{P_nS}$ liegen.

Im Dach am Punkt L(6 | 0 | 26) ist ein Scheinwerfer montiert. Geben Sie eine allgemeine Formel für den Abstand von L zur Geradenschar g_n an.

(4 P)

(9 P)

	Erwartete Leistung		ordnu wertu	
	El waite to Zolotang		11	
a)	Es ist $\overrightarrow{FG} = \begin{pmatrix} 10 - 6 \\ 0 - (-4) \\ 23 - 23 \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \\ 0 \end{pmatrix}$ und $ \overrightarrow{FG} = \sqrt{16 + 16} = 4\sqrt{2}$.	1		
	Damit ist $\overrightarrow{OE} = \overrightarrow{OF} + 4\sqrt{2} \frac{1}{\left \overrightarrow{BA} \right } \overrightarrow{BA} = \begin{pmatrix} 6 \\ -4 \\ 23 \end{pmatrix} + \frac{4\sqrt{2}}{6\sqrt{2}} \begin{pmatrix} -6 \\ 6 \\ 0 \end{pmatrix}$, also	1	VIII.A.PURAAUPRAAUPRAAUPRAAUPRAAUPRAAUPRAAUP	
	$\overrightarrow{OE} = \begin{pmatrix} 2 \\ 0 \\ 23 \end{pmatrix}, \text{ d.h. } E(2/0/23).$	1	PARTICULAR DESCRIPTION OF THE PARTICULAR PROPERTY.	
	$\overrightarrow{OH} = \overrightarrow{OE} + \overrightarrow{FG} = \begin{pmatrix} 2 \\ 0 \\ 23 \end{pmatrix} + \begin{pmatrix} 4 \\ 4 \\ 0 \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \\ 23 \end{pmatrix}, \text{ also } H(6/4/23).$	1		
	Aus der Ebene $E_1: \vec{x} = \begin{pmatrix} 6 \\ 0 \\ 27 \end{pmatrix} + s \begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}; s, t \in IR \text{ (es wurden für } $			
	\overrightarrow{SF} und \overrightarrow{SG} vereinfachte Spannvektoren benutzt) ergibt sich die Koordinatenform der Ebene mit dem Normalenvektor $\overrightarrow{n_1} = \begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \text{ wie folgt: } E_1: X_1 - X_2 + X_3 = 33.$	3		
-	Für die Berechnung des eingeschlossenen Winkels \square genügt es den Normalenvektor von E_2 anzugeben (es werden wie oben vereinfachte Vektoren benutzt). $\overrightarrow{n_2} = \frac{1}{6} \overrightarrow{BC} \times \frac{1}{2} \overrightarrow{BF} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$		2	
	$\cos \alpha = \frac{\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}}{\sqrt{1+1+1} \cdot \sqrt{4+4+1}} = \frac{2+2+1}{3\sqrt{3}} = \frac{5}{3\sqrt{3}} \Rightarrow \alpha \approx 15,79^{\circ}.$		1	

b)	Für die Gerade durch S und F gilt $SF : \vec{x} = \begin{pmatrix} 6 \\ 0 \\ 27 \end{pmatrix} + r \begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix}$.			
	(Richtungsvektor vereinfacht.) Die x_3 -Komponente wird Null, wenn $r=27$ ist, also ist der Verankerungspunkt V_F am Boden V_F (6 / -27 / 0).	2		
	Für die Gerade durch S und G gilt $SG : \vec{x} = \begin{pmatrix} 6 \\ 0 \\ 27 \end{pmatrix} + r \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$.			
	(Richtungsvektor vereinfacht.) Die x_3 -Komponente wird Null, wenn auch $r=27$ ist, also ist der Verankerungspunkt V_G am Boden V_G (33 / 0 / 0).	2		
	Der Flächeninhalt lässt sich zum Beispiel mithilfe des Kreuzproduktes ermitteln.			
	$A = \frac{1}{2} \overrightarrow{SV_F} \times \overrightarrow{SV_G} $	1		
	also $A = \frac{27^2}{2} \sqrt{3} \approx 631{,}33$. Das beschriebene Segel hat einen			
	Flächeninhalt von 631,33 m².		2	
c)	Aus der Geraden $SV_G: \vec{x} = \begin{pmatrix} 6 \\ 0 \\ 27 \end{pmatrix} + r \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ ergibt sich eine zum Spannseil			
	SV_G orthogonale Ebene durch T: E_T : $\begin{bmatrix} \vec{x} - \begin{pmatrix} 6 \\ -6 \\ 0 \end{bmatrix} \end{bmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = 0$.		1	
	Diese Ebene E_T und die Gerade SV_G schneiden sich in einem Punkt P .			

2

1

1

1

2

1

Leistungskurs Mathematik

Thema: Analytische Geometrie

Berechnung von P:

$$\begin{bmatrix} \binom{6}{0} \\ 0 \\ 27 \end{bmatrix} + r \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} - \begin{pmatrix} 6 \\ -6 \\ 0 \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = 0 \Leftrightarrow r + 0 + (27 - r) \cdot (-1) = 0 \Leftrightarrow r = 13,5$$

Es folgt: P(19,5 | 0 | 13,5).

Damit kann das Sicherungsseil durch die Gerade s mit der Gleichung

s:
$$\vec{X} = \vec{OT} + u\vec{TP} = \begin{pmatrix} 6 \\ -6 \\ 0 \end{pmatrix} + u \begin{pmatrix} 13.5 \\ 6 \\ 13.5 \end{pmatrix}$$
 angegeben werden, oder mit

vereinfachtem Richtungsvektor s:
$$\vec{X} = \begin{pmatrix} 6 \\ -6 \\ 0 \end{pmatrix} + u \begin{pmatrix} 9 \\ 4 \\ 9 \end{pmatrix}$$
.

Zu untersuchen ist jetzt, ob sich Sicherungsseil und Strebe beeinflussen. Zur Untersuchung der Geraden s und g werden die Geradenterme gleichgesetzt:

$$\begin{pmatrix} 6 \\ -6 \\ 0 \end{pmatrix} + u \begin{pmatrix} 9 \\ 4 \\ 9 \end{pmatrix} = \begin{pmatrix} 9 \\ -3 \\ 0 \end{pmatrix} + r \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$
. Aus den ersten beiden Komponenten

erhält man sofort 13 u = 6, also $u = \frac{6}{13}$ und damit $r = \frac{15}{13}$, aber die dritte

Gleichung ist dann nicht erfüllt, also gibt es kein Paar (r; u), das alle drei Gleichungen erfüllt. Die Geraden s und g sind windschief.

Wegen
$$\begin{pmatrix} 9\\4\\9 \end{pmatrix} \times \begin{pmatrix} 1\\-1\\1 \end{pmatrix} = \begin{pmatrix} 13\\0\\-13 \end{pmatrix}$$
 kann der Abstand d durch

$$d = \begin{bmatrix} 9 \\ -3 \\ 0 \end{bmatrix} - \begin{bmatrix} 6 \\ -6 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \cdot \frac{1}{\sqrt{2}} = \frac{3}{\sqrt{2}} \approx 2,12 \text{ angegeben werden.}$$

Da die Längeneinheit m ist, beeinflussen sich Strebe und Drahtseil nicht, da der geringste Abstand über 2 m beträgt.

Thema: Analytische Geometrie

d)	Es gilt g_n : $\vec{x} = \begin{pmatrix} 6 \\ 0 \\ 27 \end{pmatrix} + r \begin{pmatrix} 6-6 \\ n-0 \\ 19-27 \end{pmatrix} = \begin{pmatrix} 6 \\ 0 \\ 27 \end{pmatrix} + r \begin{pmatrix} 0 \\ n \\ -8 \end{pmatrix}$; $r \in IR$	1	
	Abstand der Geraden vom Punkt L : Die orthogonale Ebene E_3 zur den Geraden g_n , die L enthalten, ist $E_3: \begin{bmatrix} \vec{x} - \begin{pmatrix} 6 \\ 0 \\ 26 \end{bmatrix} \end{bmatrix} \cdot \begin{pmatrix} 0 \\ n \\ -8 \end{pmatrix} = 0.$		
	Einsetzen der Geradenterme von g_n in die Normalenform von E_3 liefert die		
·	Gleichung $ \begin{bmatrix} 6 \\ rn \\ 27 - 8r \end{bmatrix} - \begin{pmatrix} 6 \\ 0 \\ 26 \end{bmatrix} \end{bmatrix} \cdot \begin{pmatrix} 0 \\ n \\ -8 \end{pmatrix} = 0. $ Daraus ergibt sich		1,
-	$r n^2 + 64 r - 8 = 0 \Leftrightarrow r = \frac{8}{n^2 + 64}$		
	Damit sind die Schnittpunkte T_n der Geraden g_n mit der Ebene E_3 T_n (6 $\frac{8 \mathrm{n}}{\mathrm{n}^2 + 64}$ $27 - \frac{64}{\mathrm{n}^2 + 64}$).		1
	Für die Abstände d_n des Punktes L zu den Punkten T_n folgt:		
	$d_n = \begin{vmatrix} 6 \\ \frac{8n}{n^2 + 64} \\ 27 - \frac{64}{n^2 + 64} \end{vmatrix} - \begin{pmatrix} 6 \\ 0 \\ 26 \end{vmatrix} = \begin{vmatrix} \frac{8n}{n^2 + 64} \\ 1 - \frac{64}{n^2 + 64} \end{vmatrix} = \sqrt{\frac{n^2}{n^2 + 64}} = \frac{ n }{\sqrt{n^2 + 64}}.$		1

12 | 15

Thema: Stochastik

Aufgabe 5

Rund um den HSV

Der Hamburger SV trägt seine Heimspiele in der 57 000 Zuschauer fassenden Arena im Volkspark aus (siehe Abb. 1).

In der ersten Reihe des Blocks 3B (siehe Abb. 2) befinden sich 31 Plätze, von denen im letzten Saisonspiel 29 besetzt werden.

Abb. 1: Arena des HSV

Abb. 2: Block 3B

 Bestimmen Sie die Anzahl aller Möglichkeiten, wie sich die 29 Personen auf die 31 Plätze verteilen können.
 Bestimmen Sie ferner die Anzahl aller Möglichkeiten, wie sich die freien Plätze verteilen können.

(4 P)

Leistungskurs Mathematik Thema: Stochastik

- b) Die Bundesligastatistik über viele Jahre weist aus, dass im Mittel etwa 3 Tore pro Spiel (Spieldauer: 90 Minuten) fallen. Ein Zuschauer verlässt während der Spielzeit für 3 Minuten seinen Sitzplatz, um die Toilette aufzusuchen. Auf dem Weg überlegt er sich, ob er bis zu seiner Rückkehr ein Tor "verpasst" haben wird. Bestimmen Sie die Wahrscheinlichkeit, dass ausgerechnet in diesen 3 Minuten mindestens ein Tor fällt. Begründen Sie Ihre Wahl einer passenden Zufallsvariablen und ihrer Verteilung. Gehen Sie dabei insbesondere kritisch auf den Modellcharakter Ihrer Wahl ein.
- c) Ein Busunternehmen aus Flensburg bietet den Transport zum Stadion an. Es verfügt über zwei Busse mit insgesamt 92 Plätzen. Man kann einen Busplatz telefonisch oder per Internet buchen, aber erst beim Fahrtantritt zahlen. Der Andrang bei Fußballspielen ist erfahrungsgemäß groß, und das Angebot ist stets ausgebucht. Allerdings werden im Mittel nur 89 % der gebuchten Plätze tatsächlich wahrgenommen. Wegen der zu erwartenden Absagen von gebuchten Fahrten nimmt das Unternehmen deshalb 101 Plätze also mehr als vorhanden zur Buchung an.
 - Berechnen Sie die Wahrscheinlichkeit, dass bei Fahrtantritt mehr als 92 Fahrgäste erscheinen und damit Personen mit gebuchten Plätzen abgewiesen werden müssen.
 - Bestimmen Sie die Maximalzahl der Buchungen, die der Unternehmer zulassen kann, so dass er mit einer Wahrscheinlichkeit von mindestens 95 % keine Beschwerden wegen Überbuchungen erhält.

(12 P)

(6 P)

d) Das Busunternehmen will erreichen, dass der Anteil der Absagen sinkt. Deshalb ändert es seine Vertragsbedingungen dahingehend, dass schon gleich bei der Buchung eine Anzahlung von 5 € zu zahlen ist, die bei Nichterscheinen nicht zurückgezahlt wird. Während der nächsten 1000 Buchungen soll untersucht werden, ob die neue Regelung zu einer Senkung der Absagerquote führt. Leiten Sie dazu eine Entscheidungsregel her. Gehen Sie dabei von einem Signifikanzniveau von 5% aus.

(8 P)

Thema: Stochastik

Gausssche Integralfunktion $\Phi(z) = \int\limits_{-\infty}^{z} \phi(x) \; dx$

Z	Φ(-z)	Φ(z)	Z	Ф(-z)	Φ(z)	z	Φ(-z)	Ф(z)		Z	Φ(-z)	Φ(z)
12000	0,	0,		0,	0,	19799	0,	0,		0.00	0,	0,
0,01	4960	5040	0,76	2236	7764	1,51	0655	9345		2,26	0119	9881
0,02	4920	5080	0,77	2206	7794	1,52	0643	9357		2,27	0116	9884
0,03	4880	5120	0,78	2177	7823	1,53	0630	9370		2,28	0113	9887
0.04	4840	5160	0,79	2148	7852	1,54	0618	9382		2,29	0110	9890
0,05	4801	5199	0,80	2119	7881	1,55	0606	9394		2,30	0107	9893
0,06	4761	5239	0,81	2090	7910	1,56	0594	9406		2,31	0104	9896
0,07	4721	5279	0,82	2061	7939	1,57	0582	9418		2,32	0102	9898
0.08	4681	5319	0,83	2033	7967	1,58	0571	9429		2,33	0099	9901
0,09	4641	5359	0,84	2005	7995	1,59	0559	9441		2,34	0096	9904
0,10	4602	5398	0,85	1977	8023	1,60	0548	9452		2,35	0094	9906
0,11	4562	5438	0,86	1949	8051	1,61	0537	9463		2,36	0091	9909
	4522	5478	0,87	1922	8078		0526	9403		2,37	0089	9911
0,12						1,62				2,37		
0,13	4483	5517	0,88	1894	8106	1,63	0516	9484			0087	9913
0,14	4443	5557	0,89	1867	8133	1,64	0505	9495		2,39	0084	9916
0,15	4404	5596	0,90	1841	8159	1,65	0495	9505		2,40	0082	9918
0,16	4364	5636	0,91	1814	8186	1,66	0485	9515		2,41	0080	9920
0,17	4325	5675	0,92	1788	8212	1,67	0475	9525		2,42	0078	9922
0.18	4286	5714	0,93	1762	8238	1,68	0465	9535		2,43	0075	9925
0.19	4247	5753	0,94	1736	8264	1,69	0455	9545		2.44	0073	9927
0,20	4207	5793	0,95	1711	8289	1,70	0446	9554		2,45	0071	9929
0,21	4168	5832	0,96	1685	8315	1,71	0436	9564		2,46	0069	9931
	4129	5871	0,96		8340		0436	9573		2,40		9931
0,22				1660		1,72					0068	
0,23	4090	5910	0,98	1635	8365	1,73	0418	9582		2,48	0066	9934
0,24	4052	5948	0,99	1611	8389	1,74	0409	9591		2,49	0064	9936
0,25	4013	5987	1,00	1587	8413	1,75	0401	9599		2,50	0062	9938
0,26	3974	6026	1,01	1562	8438	1,76	0392	9608		2,51	0060	9940
0,27	3936	6064	1,02	1539	8461	1,77	0384	9616		2,52	0059	9941
0,28	3897	6103	1,03	1515	8485	1,78	0375	9625		2,53	0057	9943
0,29	3859	6141	1,04	1492	8508	1,79	0367	9633		2,54	0055	9945
0,30	3821	6179	1,05	1469	8531	1,80	0359	9641		2,55	0054	9946
0,31	3783	6217	1,06	1446	8554	1,81	0351	9649		2,56	0052	9948
												9949
0,32	3745	6255	1,07	1423	8577	1,82	0344	9656		2,57	0051	
0,33	3707	6293	1,08	1401	8599	1,83	0336	9664		2,58	0049	9951
0,34	3669	6331	1,09	1379	8621	1,84	0329	9671		2,59	0048	9952
0,35	3632	6368	1,10	1357	8643	1,85	0322	9678		2,60	0047	9953
0,36	3594	6406	1,11	1335	8665	1,86	0314	9686		2,61	0045	9955
0,37	3557	6443	1,12	1314	8686	1,87	0307	9693		2,62	0044	9956
0,38	3520	6480	1,13	1292	8708	1,88	0301	9699		2,63	0043	9957
0,39	3483	6517	1,14	1271	8729	1,89	0294	9706		2,64	0041	9959
0.40	3446	6554	1,15	1251	8749	1,90	0287	9713		2,65	0040	9960
0,41	3409	6591	1,16	1230	8770	1,91	0281	9719		2,66	0039	9961
0.42	3372	6628	1,17	1210	8790	1,92	0274	9726		2,67	0038	9962
0,42	3336	6664	1,18	1190	8810	1,92	0268	9732		2,68	0037	9963
										2,69		9964
0,44	3300	6700	1,19	1170	8830	1,94	0262	9738			0036	
0,45	3264	6736	1,20	1151	8849	1,95	0256	9744		2,70	0035	9965
0,46	3228	6772	1,21	1131	8869	1,96	0250	9750		2,71	0034	9966
0,47	3192	6808	1,22	1112	8888	1,97	0244	9756		2,72	0033	9967
0,48	3156	6844	1,23	1093	8907	1,98	0239	9761		2,73	0032	9968
0,49	3121	6879	1,24	1075	8925	1,99	0233	9767		2,74	0031	9969
0,50	3085	6915	1,25	1056	8944	2,00	0228	9772		2,75	0030	9970
0,51	3050	6950	1,26	1038	8962	2,01	0222	9778		2,76	0029	9971
0,52	3015	6985	1,27	1020	8980	2,02	0217	9783		2,77	0028	9972
0,53	2981	7019	1,28	1003	8997	2,03	0212	9788		2,78	0027	9973
0,54	2946	7054	1,29	0985	9015	2,04	0207	9793		2,79	0026	9974
					9013		0207	9798		2,79	0026	9974
0,55	2912	7088	1,30	0968	100000000000000000000000000000000000000	2,05	(000,000,000,000,000,000,000,000,000,00	(CROSSESS)		0.000	2000000000	
0,56	2877	7123	1,31	0951	9049	2,06	0197	9803	100	2,81	0025	9975
0,57	2843	7157	1,32	0934	9066	2,07	0192	9808		2,82	0024	9976
0,58	2810	7190	1,33	0918	9082	2,08	0188	9812		2,83	0023	9977
0,59	2776	7224	1,34	0901	9099	2,09	0183	9817		2,84	0023	9977
0,60	2743	7257	1,35	0885	9115	2,10	0179	9821		2,85	0022	9978
0,61	2709	7291	1,36	0869	9131	2,11	0174	9826		2,86	0021	9979
0,62	2676	7324	1,37	0853	9147	2,12	0170	9830		2,87	0021	9979
0,63	2643	7357	1,38	0838	9162	2,13	0166	9834		2,88	0020	9980
0,64	2611	7389	1,39	0823	9177	2,14	0162	9838		2,89	0019	9981
0,65	2578	7422	1,40	0808	9192	2,15	0158	9842		2,90	0019	9981
		0.000.000.000	1,000,000	10.0450.0000.0000.00				55000 AVE 11				
0,66	2546	7454	1,41	0793	9207	2,16	0154	9846		2,91	0018	9982
0,67	2514	7486	1,42	0778	9222	2,17	0150	9850		2,92	0018	9982
0,68	2483	7517	1,43	0764	9236	2,18	0146	9854		2,93	0017	9983
0,69	2451	7549	1,44	0749	9251	2,19	0143	9857		2,94	0016	9984
0,70	2420	7580	1,45	0735	9265	2,20	0139	9861		2,95	0016	9984
0,71	2389	7611	1,46	0721	9279	2,21	0136	9864		2,96	0015	9985
0,72	2358	7642	1,47	0708	9292	2,22	0132	9868		2,97	0015	9985
		7673	1,48	0694	9306	2,23	0132	9871		2,98	0013	9986
		1013	1,40		2000							
0,73	2327		1.40	0691	0310	2.74	0125	9875		2.00	0014	9886
0,72 0,73 0,74 0,75	2296 2266	7704 7734	1,49 1,50	0681 0668	9319 9332	2,24 2,25	0125 0122	9875 9878		2,99 3,00	0014 0013	9986 9987

Leistungskurs Mathematik Thema: Stochastik

Erwartungshorizont

	Erwartete Leistung		uordnu ewertui	\mathcal{L}
			II	III
a)	Die zuerst ankommende Person hat 31 Plätze zur Auswahl, die zweite 30, usw. und die letzte schließlich noch 3.			
	Das ergibt $31 \cdot 30 \cdot \cdot 3 = \frac{31!}{2!} \approx 4,11 \cdot 10^{33}$ Möglichkeiten.	2		
	Da man bei den freien Plätzen die Reihenfolge nicht berücksichtigen kann, gibt			
	es $\binom{31}{2}$ = 465 Möglichkeiten für die freien Plätze.	2		

	Erwartete Leistung					
		I	II	III		
b)	Es werden im Folgenden zwei mögliche Lösungswege angegeben:					
	1. Wir nehmen an, dass die Wahrscheinlichkeit, dass ein Tor in einer Zeitspanne					
	von einer Minute fällt, bei 3 Toren pro Spiel $\frac{1}{30}$ ist. Wenn man annimmt,					
	dass die Wahrscheinlichkeit für einen Torschuss in jeder der drei Minuten gleich bleibt und nicht mehr als ein Tor pro Minute fallen kann (darf), dann ist die Zufallsvariable X, die die möglichen Anzahlen der in einem Spiel fallenden Tore beschreibt, binomialverteilt mit den Parameter n = 3 und		2			
	$p = \frac{1}{30}.$					
	Dann gilt $P(X \ge 1) = 1 - P(X = 0) = 1 - \left(\frac{29}{30}\right)^3 \approx 1 - 0.9033 = 0.0967.$		1			
	Sicher ist die Wahrscheinlichkeit für einen Torschuss nicht in jeder Minute gleich, denn					
	- führende Mannschaften können schon einmal einen Gang herausnehmen;					
	- gegen Spielende kann die Kondition nachlassen;					
	- die Konzentration der Verteidigung kann nachlassen;					
	 eine Mannschaft kann sich schon mit einem Spielergebnis zufrieden gegeben haben; 					
	- oder eine Mannschaft kann unter dem Zeitdruck besonders offensiv spielen.					
	(*Hinweis zur Bewertung: Für jedes Argument, in dem kritisch auf den Modellcharakter eingegangen wird, sollte ein Punkt gegeben werden, höchstens jedoch drei Punkte.)			3*		
	2. Ein Tor ist ein relativ seltenes Ereignis. Nimmt man an, dass in gleichlangen Spielzeitintervallen die Wahrscheinlichkeit für das Fallen eines Tores konstant ist, und dass auch in sehr kurz aufeinander folgenden Zeitintervallen Tore möglich sind, dann kann man die Zufallsvariable X, die die möglichen Anzahlen der in einem Spiel fallenden Tore beschreibt, als Poisson-verteilt					
	mit dem Parameter $\mu = 3 \cdot \frac{1}{30} = \frac{1}{10}$ ansehen.		(2)			
	Dann gilt $P_{0,1}(X \ge 1) = 1 - P_{0,1}(X = 0) = 1 - e^{-0.1} \approx 0.0952$.					
	Begründungen wie unter 1. Hier wäre auch ein Eingehen auf die möglichen Werte von X, also 0, 1, 2, denkbar. X ließe also auch eine über alle Grenzen wachsende Anzahl von Toren innerhalb von drei Minuten zu.		(1)	(3*)		

	Erwartete Leistung		uordnu	_
		I	II	III
c)	• Es kennzeichne die Zufallsvariable Y die möglichen Anzahlen der 101 Personen, die tatsächlich an der Fahrt teilnehmen wollen. Y ist binomialverteilt mit den Parameters n = 101 und p = 0,89.	1		
	Wegen $np(1-p) = 101 \cdot 0.89 \cdot 0.11 = 9.8879 > 9$ (Laplace-Bedingung) kann man Y näherungsweise als normalverteilt ansehen. Es gilt	1		
	$P(Y > 92) = 1 - P(Y \le 92) \approx 1 - \Phi\left(\frac{92, 5 - 89, 89}{\sqrt{9,8879}}\right) \approx 1 - \Phi(0,8300)$			
	$\approx 1 - 0.7967 \approx 20.3\%$	3		
	• Die Zufallsvariable Y ist jetzt binomialverteilt mit den Parametern n und $p = 0.89$, wobei n so zu bestimmen ist, dass $P(Y \le 92) \ge 0.95$ gilt.			
	Da n mindestens 92 betragen muss, gilt die Laplace-Bedingung, denn $n \cdot 0.89 \cdot 0.11 \ge 92 \cdot 0.89 \cdot 0.11 = 9.0068 > 9$.		1	
	Somit folgt $P(Y \le 92) \approx \Phi\left(\frac{92,5 - 0,89 \cdot n}{\sqrt{0,89 \cdot 0,11 \cdot n}}\right) \ge 0,95$ und damit			
	$\frac{92,5-0,89\cdot n}{\sqrt{0,89\cdot 0,11\cdot n}} \ge 1,645.$		2	
	Mit der Substitution $x = \sqrt{n}$ und Rundungen auf vier Dezimalen folgt			
	$92,5-0,89x^2 \ge 0,5147x$, also $x^2 + 0,5783x - 103,9326 \le 0$. Mit der quadratischen Ergänzung erhält man die Ungleichung			
	$(x+0.2892)^2 \le 103.9326 + 0.0836 = 104.0162$ und damit $ x+0.2892 \le \sqrt{104.0162} \approx 10.1988$, also			
	$-10,1988 \le x + 0,2892 \le 10,1988$, woraus			
	$-10,488 \le \sqrt{n} \le 9,9096$ folgt.			
	Da \sqrt{n} nicht negativ ist, folgt $n \le 98,2$. Man darf also höchstens 98 Buchungen vornehmen, damit mit mindestens 95 %iger Wahrscheinlichkeit keine Beschwerden wegen der Überbuchungen kommen.		4	

	Erwartete Leistung		uordnu ewertu	_
			II	III
d)	Die Testvariable T beschreibt die möglichen Anzahlen von Absagen. Wenn man annimmt, dass alle Bucher unabhängig voneinander buchen, also z. B. keine Gruppen (Familien, Fanclubs,) geschlossen buchen bzw. geschlossen absagen, dann kann man T als binomialverteilt mit den Parametern n = 1000 und p annehmen.	1	1	
	Wenn man überprüfen will, ob die Absagerquote durch den Anzahlungszwang gesenkt wurde, muss man annehmen, dass die Regelung nichts oder das Gegenteil bewirkt hat. Die Nullhypothese lautet damit H_0 : $p \ge 0,11$.		1	
	Man wird die Hypothese ablehnen, wenn die Zahl der Absagen relativ klein ist, also in einem Intervall [0; c] liegt.	1		
	Wegen $1000 \cdot p \cdot (1-p) \ge 1000 \cdot 0,11 \cdot 0,89 = 97,9 \ge 9$ ist T näherungsweise normalverteilt mit $\mu = 110$ und $\sigma = \sqrt{97,9}$.	1		
	Aufgrund der Wahl des Signifikanzniveaus 5 % gilt $P(T \le c) \le \Phi\left(\frac{c + 0.5 - 110}{\sqrt{1000 \cdot 0.11 \cdot 0.89}}\right) \le 0.05 \text{ und damit}$			
	$\Phi\left(\frac{110 - c - 0.5}{\sqrt{1000 \cdot 0.11 \cdot 0.89}}\right) \ge 0.95. \text{ Dem Tafelwerk entnimmt man}$ $\frac{110 - c - 0.5}{\sqrt{1000 \cdot 0.11 \cdot 0.89}} \ge 1.645, \text{ woraus}$			
	$c \le 109,5-1,645 \cdot \sqrt{1000 \cdot 0,11 \cdot 0,89} \approx 93,224$, also $c \le 93$ folgt. Der Ablehnungsbereich lautet [0; 93]. Wenn also unter 1000 Buchungen höchstens 93 Absagen auftreten, kann man von einem Erfolg der Maßnahme sprechen, da nur mit einer Wahrscheinlichkeit von höchstens 5 % so wenige Absagen vorkommen, wenn die Maßnahme nicht gegriffen hätte.		3	
		12	15	3

Leistungskurs Mathematik Thema: Stochastik

Aufgabe 6

Falschparker

Nach Angabe des Berliner Senates beträgt der Anteil der Falschparker (also Autos ohne Parkschein) gemäß einer Studie aus dem Frühjahr 15%. (Das Parkverhalten eines Einzelnen wird durch die Anderen nicht beeinflusst.)

- a) Zwei Berliner Politessen überprüfen zunächst den Parkplatz "Kudamm-Karree" mit genau 34 Autos, dann den Parkplatz "Kurfürstendamm" mit 48 Autos.
 - Berechnen Sie die Wahrscheinlichkeit dafür, dass die Politessen auf beiden Parkplätzen zusammen mindestens vier Falschparker aufschreiben.
 - Geben Sie an, mit wie vielen Falschparkern die Politessen auf beiden Parkplätzen zusammen rechnen können.

(4 P)

- b) Die Senatsverwaltung möchte eine Stichprobe von überprüften Autos untersuchen.
 - Bestimmen Sie für eine Stichprobe von 500 Autos den kleinstmöglichen, zum Erwartungswert symmetrischen Bereich, in dem die Zahl der Falschparker mit einer Wahrscheinlichkeit von mindestens 80% liegt.
 - Berechnen Sie, wie viele parkende Autos man überprüfen muss, um mit einer Wahrscheinlichkeit von über 99 % mindestens einen Falschparker zu erwischen.

(8 P)

Leistungskurs Mathematik Thema: Stochastik

c) Es gibt nicht überall und jederzeit Politessen. Deswegen kann man davon ausgehen, dass nur etwa 10% von allen Falschparkern durch Kontrollen von Politessen gefunden werden. Etwa die Hälfte davon kehrt nach wenigen Minuten zum Wagen zurück und trifft dort die Politessen noch an. Da sich Berlin als autofahrerfreundliche Stadt präsentieren will, hat der Senat zunächst beschlossen, dass diese Personen nur mündlich verwarnt werden, aber die normale Parkgebühr von 1 € pro Stunde nachbezahlen müssen. Die andere Hälfte muss ein Bußgeld von 15 € bezahlen.

Ein Senatsbeamter kommt in einem Aktenvermerk aufgrund der angegebenen Daten zu dem Schluss, dass die Stadt mit jedem Falschparker einen Verlust von 0,20 € macht. Er schlägt deswegen eine Erhöhung des Bußgeldes auf 19 € vor.

Auf Nachfrage erklärt der Beamte, er sei zu seinem Ergebnis wie folgt gekommen:

90 % der Falschparker werden nicht erwischt, jeder von diesen bringt 1 € Verlust. Von den restlichen 10 % bringt die Hälfte keinen Verlust und die andere Hälfte eigentlich ja nur 14 € Mehreinnahmen.

- Beurteilen Sie seine Rechnung.
- Untersuchen Sie den Vorschlag des Beamten auf Erhöhung des Bußgeldes.

(7 P)

- d) Der Senat entschloss sich letztendlich zu einer drastischen Erhöhung der Parkgebühren. Im Gegensatz zum Senat befürchten die Medien, dass (deswegen) der Anteil der Falschparker deutlich angestiegen sein könnte.
 - Leiten Sie ein Testverfahren für eine Kontrolle von 2400 Fahrzeugen her, mit dem man die Befürchtungen der Medien untersuchen kann. Geben Sie dazu Entscheidungsregeln bei einem Signifikanzniveau von 5 % an.

Eine unabhängige und verlässliche Studie nach der Gebührenerhebung im Sommer ergab, dass der Falschparkeranteil nunmehr bei mindestens 18 % liegt.

 Bestimmen Sie den kleinstmöglichen Bereich für die Wahrscheinlichkeit, dass sich der Senat trotzdem in seiner Ansicht bestätigt fühlt, wenn man obigen Test durchführt.

(11 P)

Thema: Stochastik

Gaussiche Integralfunktion $\Phi(z)=\int\limits_{-z}^{z} \; \phi(x) \; dx$

Z	Φ(-z)	Φ(z)	Z	Φ(-z)	Ф(z)	Z	Φ(-z)	Φ(z)
	0,	0,	orași c	0,	0,	1.00000	0,	0,
0,01	4960	5040	0,76	2236	7764	1,51	0655	9345
02	4920	5080	0,77	2206	7794	1,52	0643	9357
03	4880	5120	0,78	2177	7823	1,53	0630	9370
,04	4840 4801	5160 5199	0,79 0,80	2148 2119	7852 7881	1,54 1,55	0618 0606	9382 9394
,05	4761	5239	0,80	2090	7910	1,56	0594	9406
,00	4701	5239	0,81	2061	7939	1,57	0594	9418
,08	4681	5319	0,83	2033	7967	1.58	0571	9429
,09	4641	5359	0,84	2005	7995	1,58 1,59	0559	9441
,10	4602	5398	0,85	1977	8023	1,60	0548	9452
,11	4562	5438	0,86	1949	8051	1,61	0537	9463
,12	4522	5478	0,87	1922	8078	1,62	0526	9474
.13	4483	5517	0,88	1894	8106	1,63	0516	9484
14	4443	5557	0,89	1867	8133	1,64	0505	9495
15	4404	5596	0,90	1841	8159	1,65	0495	9505
.16	4364	5636	0,91	1814	8186	1,66	0485	9515
17	4325	5675	0,92	1788	8212	1,67	0475	9525
18	4286	5714	0,93	1762	8238	1,68	0465	9535
19 20	4247 4207	5753 5793	0,94 0,95	1736 1711	8264 8289	1,69 1,70	0455 0446	9545 9554
	200			Control Volume				
21 22	4168 4129	5832 5871	0,96 0,97	1685 1660	8315 8340	1,71 1,72	0436 0427	9564 9573
23	4090	5910	0,97	1635	8365	1,72	0427	9573
24	4052	5948	0,98	1611	8389	1,74	0409	9591
24 25	4013	5987	1,00	1587	8413	1,75	0401	9599
26	3974	6026	1,01	1562	8438	1,76	0392	9608
27	3936	6064	1,02	1539	8461	1,77	0384	9616
8	3897	6103	1,03	1515	8485	1.78	0375	9625
9	3859	6141	1,04	1492	8508	1,79	0367	9633
)	3821	6179	1,05	1469	8531	1,80	0359	9641
	3783	6217	1,06	1446	8554	1,81	0351	9649
	3745	6255	1,07	1423	8577	1,82	0344	9656
	3707	6293	1,08	1401	8599	1,83	0336	9664
	3669 3632	6331	1,09 1,10	1379	8621 8643	1,84 1,85	0329 0322	9671 9678
	3594	6368	1,10	1357 1335		1,85		96/8
	3557	6406 6443	1,11	1314	8665 8686	1,86	0314 0307	9686
	3520	6480	1,12	1292	8708	1,88	0301	9699
}	3483	6517	1,14	1271	8729	1,89	0294	9706
)	3446	6554	1,15	1251	8749	1,90	0287	9713
1	3409	6591	1,16	1230	8770	1,91	0281	9719
2	3372	6628	1,17	1210	8790	1,92	0274	9726
	3336	6664	1,18	1190	8810	1,93	0268	9732
	3300	6700	1,19	1170	8830	1,94	0262	9738
	3264	6736	1,20	1151	8849	1,95	0256	9744
7	3228	6772	1,21	1131	8869	1,96	0250	9750
	3192	6808	1,22	1112	8888	1,97	0244	9756
	3156	6844	1,23	1093	8907	1,98	0239	9761
	3121 3085	6879 6915	1,24 1,25	1075 1056	8925 8944	1,99 2,00	0233 0228	9767 9772
	3050	6950	1,26	1036	8962	2,00	0228	9778
	3030	6985	1,26	1038	8982	2,01	0222	97/8
2	2981	7019	1,28	1003	8997	2,02	0217	9788
	2946	7054	1,29	0985	9015	2,04	0207	9793
	2912	7088	1,30	0968	9032	2,05	0202	9798
5	2877	7123	1,31	0951	9049	2,06	0197	9803
7	2843	7157	1,32	0934	9066	2,07	0192	9808
3	2810	7190	1,33	0918	9082	2,08	0188	9812
)	2776	7224	1,34	0901	9099	2,09	0183	9817
)	2743	7257	1,35	0885	9115	2,10	0179	9821
	2709	7291	1,36	0869	9131	2,11	0174	9826
	2676	7324	1,37	0853	9147	2,12	0170	9830
3	2643	7357	1,38	0838	9162	2,13	0166	9834
4	2611	7389	1,39	0823	9177	2,14	0162	9838
5	2578	7422	1,40	0808	9192	2,15	0158	9842
56	2546	7454	1,41	0793 0778	9207	2,16	0154	9846
57 58	2514	7486	1,42		9222 9236	2,17	0150	9850 9854
8 9	2483 2451	7517 7549	1,43 1,44	0764 0749	9236	2,18 2,19	0146 0143	9854 9857
,	2420	7580	1,44	0749	9251	2,19	0139	9861
ĺ	2389	7611	1,46	0733	9203	2,21	0136	9864
	2358	7642	1,46	0721	9279	2,21	0130	9868
	2327	7673	1,47	0694	9306	2,23	0132	9871
	2296	7704	1,49	0681	9319	2,24	0125	9875
4	2290	7704	1,49	0001	9319	Section 7	0120	9013

Z	Φ(-z)	Φ(z)
225	0,	0,
2,26	0119	9881
2,27	0116	9884
2,28	0113	9887
2,29	0110	9890
2,30	0107	9893
2,31	0104	9896
2,32	0102	9898
2,33	0099	9901
2,34	0096	9904
2.35	0094	9906
2,36	0091	9909
2.37	0089	9911
2,38	0087	9913
2,39	0084	9916
2,40	0082	9918
		112073
2,41	0080	9920
2,42	0078	9922
2,43	0075	9925
2,44	0073	9927
2,45	0071	9929
2,46	0069	9931
2,47	0068	9932
2,48	0066	9934
2,49	0064	9934
	0.000 (0.0	
2,50	0062	9938
2,51	0060	9940
2,52	0059	9941
2,53	0057	9943
2,54	0055	9945
2,55	0054	9946
2,56	0052	9948
2,57	0051	9949
2.58	0049	9951
2.59	0049	9952
2,60	0048	9953
	C-12-12-12-12-12-12-12-12-12-12-12-12-12-	0.000
2,61	0045	9955
2,62	0044	9956
2,63	0043	9957
2,64	0041	9959
2,65	0040	9960
2,66	0039	9961
2,67	0038	9962
2,68	0037	9963
2,69	0036	9964
2,70	0035	9965
	0034	9966
2,71		9967
2,72	0033	
2,73	0032	9968
2,74	0031	9969
2,75	0030	9970
2,76	0029	9971
2,77	0028	9972
2,78	0027	9973
2,79	0026	9974
2,80	0026	9974
2,81	0025	9975
2,82	0023	9976
2,83	0024	9977
	0023	9977
2,84		
2,85	0022	9978
2,86	0021	9979
2,87	0021	9979
2,88	0020	9980
2,89	0019	9981
2,90	0019	9981
2,91	0018	9982
2.92	0018	9982
2,93	0017	9983
2.94	0016	9984
2,95	0016	9984
	(1000) (1000)	0.0000000000000000000000000000000000000
2,96	0015	9985
2,97	0015	9985
2,98	0014	9986
	0014	9986
2,99 3,00	0014 0013	9987

	Erwartete Leistung		uordnu ewertu	-
			II	III
a)	X beschreibt die Anzahl der Falschparker. X ist binomialverteilt mit n = 82 und p = 0,15; also $B_{82:0,15}$ -verteilt. $P(X \ge 4) = 1 - P(X \le 3) = 1 - P(X = 0) - P(X = 1) - P(X = 2) - P(X = 3)$ $\approx 1 - 0,0000016 - 0,000024 - 0,000169 - 0,000794 \approx 0,999011$			
	(0,999013 bei nicht gerundeten Zwischenwerten). Die Wahrscheinlichkeit beträgt also ca. 99,9 %. Es ist E(X) = n p = 82 · 0,15 = 12,3 . Die Politessen müssen daher mit ca. 12 Falschparkern rechnen.	3		
b)	X beschreibt die Anzahl der ertappten Falschparker bei n überprüften Autos; X ist $B_{n;0,15}$ - verteilt.			
	$\frac{\textit{Kleinstm\"{o}glicher Bereich symmetrisch zum Erwartungswert:}}{n = 500 \text{ und } p = 0,15 \Rightarrow \mu = 75 \text{ und } \sigma = \sqrt{500 \cdot 0,15 \cdot 0,85}}$			
	$\sigma = \sqrt{500 \cdot 0.15 \cdot 0.85} \approx 7.984$ Es gilt $P(\mu - d \le X \le \mu + d) \ge 0.8 \implies P(\mu - d \le X \le \mu + d) \approx \Phi(\frac{d}{\sigma}) - \Phi(-\frac{d}{\sigma}) \ge 0.8$	1		
	$\Rightarrow 2\Phi(\frac{d}{\sigma}) - 1 \ge 0.8 \Leftrightarrow \Phi(\frac{d}{\sigma}) \ge 0.9$		2	
	Aus der Tabelle für die Gaußsche Summenfunktion entnimmt man $\frac{d}{\sigma} \ge 1,28$. Damit		1	
	gilt $d \ge 10,22$, also muss $d = 11$ sein. Damit ist das gesuchte Intervall [64 ; 86]. <u>Umfang der Stichprobe</u>		1	
	Wenn n der Umfang der Stichprobe ist, so gilt $P(X \ge 1) > 0.99 \Leftrightarrow 1 - P(X = 0) > 0.99 \Leftrightarrow$ $P(X = 0) < 0.01 \Leftrightarrow \binom{n}{0} 0.15^0 0.85^n < 0.01 \Leftrightarrow 0.85^n < 0.01 \Leftrightarrow n \ln(0.85) < \ln(0.01) \Leftrightarrow$		1	
	$n > \frac{\ln(0,01)}{\ln(0,85)} \text{ (da } \ln(0,85) \text{ negativ ist). Daher ist also } n > 28,34, \text{ d h. } n \ge 29.$			
	Es müssen also mindestens 29 parkende Autos kontrolliert werden.		2	

Leistungskurs Mathematik Thema: Stochastik

	Erwartete Leistung							ng ng
							II	III
c)	Der Beamte hat den Verlust von 0,20 Euro pro Falschparker richtig erklärt: Es ist G die "Einnahme" durch Falschparker pro Stunde im Vergleich zu einem Nichtfalschparker. Ein nicht ertappter Falschparker bringt 1 €Verlust. Der verwarnte Falschparker zahlt nach, bringt also weder Gewinn noch Verlust. Ein Falschparker, der ein Bußgeld von 15 €zahlt, bringt 14 €Gewinn, denn 1 €hätte er ja sonst (als Nichtfalschparker) gebracht.							
		Falschparker nicht ertappt	Nur verwarnt	Mit Bußgeld				
	g _i (in €)	-1	0	14				
	P(G=g _i)	0,90	0,05	0,05				
	Der Erwartung dh. pro Falsch Man müsste al keinen Verlust			2				
	Ist B das erhöhte Bußgeld, so gilt für die Situation "Kein Verlust": Erwartungswert $E(G) = 0.9 \cdot (-1) + 0.05 \cdot 0 + 0.05 \cdot B = 0 \Leftrightarrow 0.05 \cdot B = 0.9 \Leftrightarrow B = 18$						2	
	Damit kein Verlust entsteht, müsste das Bußgeld mindestens auf 18+1 €= 19 €erhöht werden.							
	_	des Beamten lässt alse winn erwarten. (hier 0			nan		1	

Leistungskurs Mathematik Thema: Stochastik

	Erwartete Leistung				
		I	II	III	
d)	Wenn man die Bedenken der Medien testen will, wird man als zu testende Nullhypothese das Gegenteil von dem annehmen, was die Medien aufgrund dieser Maßnahme befürchten, damit man diese Annahme ggf. mit einer Irrtumswahrscheinlichkeit von 5% verwerfen kann. $H_0 \mbox{ sei die Hypothese, dass die Maßnahme ohne Folgen für die Falschparkerquote ist, der Prozentsatz also gleichgeblieben ist. H_0 \mbox{:} p = 0,15 \mbox{.} Die Gegenhypothese lautet dann H_1 \mbox{:} p > 0,15 \mbox{.}$	1			
	Die Zufallsvariable X beschreibe die möglichen Anzahlen von Falschparkern bei der Stichprobe mit $n=2400$. Man wird die Nullhypothese ablehnen, wenn man relativ viele Falschparker bei der Stichprobe findet, also liegt hier ein rechtsseitiger Signifikanztest vor. Also ist unter der Annahme " H_0 ist wahr" die kleinste ganzzahlige Grenze g gesucht mit $P(X \ge g) \le 0.05$ (g gehört also schon zum Ablehnungsbereich). X ist binomialverteilt mit den Parametern $n=2400$ und $p=0.15$.	1			
	Es kann hier die Näherung von Moivre-Laplace verwendet werden, da $n \cdot p \cdot (1-p) = 2400 \cdot 0.15 \cdot 0.85 = 306 > 9$ ist. Es gilt P(X > 0.05) < 0.05 (a) $P(X < 0.1) > 0.05$ Mit der Näherung folgt	1			
	P(X≥g) ≤ 0,05 ⇔ P(X≤g−1) ≥ 0,95 . Mit der Näherung folgt $\Phi\left(\frac{g-1+0,5-2400\cdot0,15}{\sqrt{306}}\right) \ge 0,95 \text{ . Somit ist mittels der Tabelle der Normalverteilung}$ und der Monotonie der Φ-Funktion $\frac{g-360,5}{\sqrt{306}} \ge 1,645 \text{ . Folglich ist } g \ge 389,28 \text{ und}$ daher $g=390$ (Ohne Korrekturglied 0,5 ergibt sich $g\ge 389,78$, also ebenfalls $g=390$). Damit ist der Ablehnungsbereich der Nullhypothese $K=[390;2400]$. Wir haben daher folgende Entscheidungsregel: Werden 390 oder mehr Falschparker erwischt, so verwerfen wir die Nullhypothese, d h. wir werden die Befürchtungen der Medien teilen. Werden höchstens 389 Falschparker ertappt, so bleiben wir bei der Nullhypothese, d h. wir entscheiden uns gegen die Befürchtungen der Medien und unterstützen die Meinung des Senats. Wenn H_0 nicht verworfen wird, obwohl H_0 falsch ist (hier $p\ge 0,18$), begeht man einen Fehler zweiter Art. Dieser tritt genau dann ein, wenn man im Annahmebereich der Nullhypothese landet, d h. im Intervall $\overline{K}=[0;389]$. Je größer der Parameter p wird,	1	2		
	desto kleiner wird die Wahrscheinlichkeit, dass der Test ein Ergebnis aus \overline{K} liefert. Im Extremfall $p=1$ wäre die Wahrscheinlichkeit dann Null. Die Wahrscheinlichkeit nimmt den größten Wert an, wenn p kleinstmöglich ist, also $p=0,18$. In diesem Fall gilt mit der Näherungsformel (da $n \cdot p \cdot (1-p) = 2400 \cdot 0,18 \cdot 0,82 = 354,24 > 9$ ist) $P(X \le 389) \approx \Phi\left(\frac{389 + 0,5 - 2400 \cdot 0,18}{\sqrt{354,24}}\right) = \Phi\left(\frac{-42,5}{\sqrt{354,24}}\right) \approx 1 - \Phi(2,26) \approx 1 - 0,9881,$ somit ist $P(X \le 389) \approx 0,012$ (ohne Korrekturglied $1 - \Phi(2,29) \approx 1 - 0,9890 = 0,011$). Das kleinstmögliche Intervall, welches die Wahrscheinlichkeiten umfasst, mit denen wir dem Senat nach dem Test zustimmen, obwohl H_0 falsch ist, ist $[0\% \ ; 1,2\%]$.			3	
		12	15	3	

Leistungskurs Mathematik CAS Thema: Analysis

Aufgabe 1

Kurvenschar mit Extremakurve

Gegeben sei die Kurvenschar f_k mit $f_k(x) = \frac{1}{k+1}(kx^2 - 2x + 3)$, $k \in \mathbb{R} \setminus \{-1;0\}$,

und die Funktion g mit $g(x) = \frac{-x^2 + 3x}{1 + x}$.

- a) Beschreiben Sie die Graphen der Schar für verschiedene Parameter k. (6 P)
- b) Bestimmen Sie die lokalen Extrema der Funktionenschar f_k in Abhängigkeit von k. Zeigen Sie, dass der Extrempunkt eines jeden Graphen zu f_k auf dem Graphen zu f_k liegt. Entscheiden Sie, ob jeder Punkt des Graphen zu f_k auch Extrempunkt einer Scharkurve zu f_k ist.
- c) Untersuchen Sie den Graphen zu g auf Schnittpunkte mit den Koordinatenachsen sowie auf Extrem- und Wendepunkte. (6 P)
- d) Eine Scharkurve wird durch die Geraden x=0 und x=3 in den Punkten A_k und B_k geschnitten. Durch diese Punkte verläuft die Gerade i_k .

Für $k > \frac{1}{3}$ liegen A_k , B_k und auch die Graphen zu f_k oberhalb der x-Achse.

(7 P)

Die Koordinatenachsen, die Gerade i_k und die Gerade x=3 begrenzen ein Flächenstück.

Die Scharkurve teilt dieses Stück in zwei Teile. Berechnen Sie den Inhalt der Teilflächen und zeigen Sie, dass diese im Verhältnis 2: 1 zueinander stehen.

e) Nun ist die Funktion h mit $h(x) = \frac{-x^2 + 3|x|}{1 + |x|}$ gegeben.

Beweisen Sie, dass die Funktion h einen symmetrischen Graphen (5 P) hat.

Untersuchen Sie die Funktion h auf Differenzierbarkeit an der Stelle $x_0\,=\,0$.

Leistungskurs Mathematik CAS Thema: Analysis

Erwartungshorizont

Er۱	wartungshorizont			ung
		Der	II	III
a)	112 118 18 18 18 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10			
	Die Scharkurven sind Parabeln 2.Ordnung. Für k < -1 und für k > 0 sind die Parabeln nach oben geöffnet, haben also einen Tiefpunkt. Für –1 < k < 0 sind die Parabeln nach unten geöffnet, haben also einen Hochpunkt.	1	5	
b)	Notwendig für einen Extrempunkt bei x_E ist $f_k(x_E)=0$. Die erste Ableitung ist $f_k'(x)=\frac{1}{k+1}\left(2kx-2\right)$. Die Gleichung $\frac{1}{k+1}\left(2kx-2\right)=0$ hat die Lösung $x=\frac{1}{k}$. Weil es sich hier um Parabeln 2.Ordnung handelt, ist die hinreichende Bedingung erfüllt. Die lokalen Extrema liegen damit bei $E_k\left(\frac{1}{k};\frac{3k-1}{k(k+1)}\right)$. Es gilt $g\left(\frac{1}{k}\right)=\frac{-\left(\frac{1}{k}\right)^2+\frac{3}{k}}{1+\frac{1}{k}}=\frac{3k-1}{k(k+1)}=f_k\left(\frac{1}{k}\right)$.	3		
	Es gilt $g\left(\frac{1}{k}\right) = \frac{1}{1+\frac{1}{k}} = \frac{1}{k(k+1)} = f_k\left(\frac{1}{k}\right)$. Damit liegen alle Extrempunkte der Schar auf dem Graphen zu g.		2	
	Da immer $\frac{1}{k} \neq 0$ ist, gibt es keinen Extrempunkt mit x-Koordinate null, aber (0 / 0) ist ein Punkt des Graphen zu g.		1	

(c)	Die Schnittpunkte des Graphen zu g mit den Koordinatenachsen sind	1	Ш	Ш				
(-)	$N_1(0/0)$ und $N_2(3/0)$.							
	Die erste Ableitung ist $g'(x) = -\frac{x^2 + 2x - 3}{(x+1)^2}$;							
	die zweite Ableitung ist $g''(x) = -\frac{8}{(1+x)^3}$.							
	Notwendig für einen Extrempunkt bei x_E ist $f_k(x_E) = 0$.							
	Die Gleichung $-\frac{x^2 + 2x - 3}{(x+1)^2} = 0$ hat die Lösungen $x = -3$ und $x = 1$.	2						
	Wegen $g''(-3) > 0$ ist bei $x = -3$ ein Tiefpunkt T. Es ist $T(-3/9)$.							
	Wegen $g''(1) < 0$ ist bei $x = 1$ ein Hochpunkt H. Es ist H(1 / 1).							
	Da die notwendige Bedingung für Wendepunkte auf die Gleichung							
	$-\frac{8}{(1+x)^3} = 0$ führt, die aber keine Lösung hat, hat der Graph von g keine	1						
	Wendepunkte.							
d)								
	A_k							
		1						
	Die Punkte (0 / 0) ; (3 / 0) ; B _k $\left(3 / \frac{9k-3}{k+1} \right)$; A _k $\left(0 / \frac{3}{k+1} \right)$ bilden ein	2						
	Trapez mit dem Flächeninhalt $A_{\text{Trapez}} = \frac{1}{2} \left(\frac{9k-3}{k+1} + \frac{3}{k+1} \right) 3 = \frac{27k}{2(k+1)}$.		2					

	Der Inhalt der Fläche unter dem Graphen zu f _k errechnet sich durch						
	$A_{fk} = \int_{0}^{3} f_k(x) dx = \frac{9 k}{k+1}.$ Damit bestimmt man den Inhalt der Teilfläche						
	oberhalb des Graphen zu f_k mit $A_{oben} = A_{Trapez} - A_{fk} = \frac{9 k}{2 (k+1)}$.		2				
	Somit stehen die Inhalte der Teilflächen im Verhältnis 2 : 1.		1				
(e)							
	Es gilt $h(-x) = \frac{-(-x)^2 + 3 -x }{1+ -x } = h(x)$ für alle $x \in IR$.						
	Also ist der dazugehörige Graph achsensymmetrisch zur Werteachse.						
	Die Funktion h hat anscheinend an der Stelle $x_0 = 0$ eine Spitze. Die Ableitung der Funktion h kann jeweils halbseitig definiert werden : $h'(x) = \begin{cases} g'(x), & \text{für } x > 0 \\ -g'(x), & \text{für } x < 0 \end{cases}, \text{ (der negative Bereich wegen der Symmetrie)}$						
	der linksseitige Grenzwert des Differenzenquotienten ist für $x \to 0$ genau $-g'(0) = -3$, der rechtsseitige Grenzwert ist $g'(0) = 3$, also ist h' an der Stelle $x = 0$ nicht definiert.						
	- · · · · · · · · · · · · · · · · · · ·						
	2						
	-5 -4 -3 -2 -1 1 2 3 4 5						
	Summe	12	15	3			

Aufgabe 2

Das Luftbild zeigt ein Rapsfeld im Kreis Plön.

Im Bild ist eine Straße als helle, schmale Linie erkennbar, die die nördliche Grenze des Rapsfeldes bildet. Die Gitterquadrate sind in der Realität 50 m lang und breit.

- a) Die Straße wird in drei Abschnitte unterteilt: Der erste Abschnitt verläuft vom linken Bildrand bis zum nördlichen Punkt A, der zweite von A zum südlicheren Punkt B und der dritte von B bis zum rechten Bildrand.
 - Bestimmen Sie eine abschnittsweise definierte Funktion, deren Graph den Verlauf der Straße möglichst genau wiedergibt. Wählen Sie für jeden Abschnitt ganzrationale Funktionen dritten Grades, sodass die Graphen der Funktionen, die für benachbarte Abschnitte definiert sind, sich an den Abschnittsgrenzen ohne Knicke aneinander anschließen.
- b) Für die mathematische Beschreibung des Mittelabschnitts zwischen A und B bietet sich auch eine trigonometrische Funktion an. Bestimmen Sie deren Gleichung. (6 P)
 (Eine Lösung ist auch durch Probieren und zusätzliche Erläuterung möglich.)

Unabhängig von Ihren Ergebnissen aus dem Aufgabenteil a) arbeiten Sie bitte in den folgenden Teilaufgaben mit den Funktionen f_1 , f_2 , f_3 mit

$$f_1(x) = 0.1375x^3 - 0.9875x^2 + 2.3x + 2.05$$
 für $x \in [0; 2]$,
 $f_2(x) = 0.0960x^3 - 1.0294x^2 + 2.9658x + 1.2181$ für $x \in [2; 5.15]$,
 $f_3(x) = -0.1421x^3 + 2.5906x^2 - 15.3728x + 32.1773$ für $x \in [5.15; 7]$,

wobei das Koordinatensystem so gewählt ist, dass der Ursprung in der unteren linken Bildecke liegt und eine Längeneinheit 50 m entspricht.

- c) Aus der Ernte eines Rapsfeldes von einem Hektar Fläche kann man
 1500 Liter Biodiesel erzeugen. Berechnen Sie die Dieselmenge, die (4 P)
 man von dem im Bild sichtbaren Feld erwarten kann.
- d) Da die Straße relativ nahe am Seeufer verläuft, soll der Untergrund besser befestigt werden. Pro m Straßenlänge rechnet man mit 4000 € Kosten. Berechnen Sie die Gesamtkosten der Straßenbefestigung.
 Hinweis: Die Länge eines Graphenabschnitts (die Bogenlänge) einer (4 P)
 Funktion f in den Grenzen von a bis b ist durch ∫√(1+(f'(x))²) dx

gegeben.

e) In der Kurve **im oberen linken Quadrat** soll nach mehreren Unfällen eine Geschwindigkeitsbegrenzung eingeführt werden. Durch die zulässige Höchstgeschwindigkeit soll dabei höchstens eine Radialbeschleunigung von 2 $\frac{m}{s^2}$ auftreten. Die Radialbeschleunigung errechnet sich aus dem Quadrat der

Geschwindigkeit (in $\frac{m}{s}$) dividiert durch den Krümmungsradius (8 P) (in m). Der Krümmungsradius r(x) eines Graphen an der Stelle x

wird durch $r(x) = \frac{\sqrt{(1 + (f'(x))^2)^3}}{f''(x)}$ berechnet. Entsprechende

Verkehrsschilder stehen in 10 $\frac{km}{h}$ - Sprüngen zur Verfügung.

Entscheiden Sie, welches Verkehrsschild aufgestellt werden muss.

Erwartete Leistung Ch wähle als Ursprung des Koordinatensystems die linke untere Ecke des Bildes. Ferner sei eine Längeneinheit durch den Abstand benachbarter Gitterlinien definiert. Die drei gesuchten ganzrationalen Funktionen dritten Grades lassen sich durch Funktionsgleichungen der Form $f_1(x) = ax^3 + bx^2 + cx + d , f_2(x) = ex^3 + fx^2 + gx + h$ sowie $f_3(x) = rx^3 + sx^2 + tx + u$ beschreiben. Jeder Funktionsterm enthält vier Parameter. Um diese zu bestimmen sind jeweils vier Gleichungen (Bedingungen) aufzustellen. Ein Beispielansatz: Der erste Straßenabschnitt soll durch den Graphen von f_1 angenähert werden: Die Straße kommt etwa bei $S(0/2,05)$ ins Bild. Ferner verläuft der Graph durch den Punkt $P(1/3,5)$ und den Hochpunkt $A(2/3,8)$, an dem die erste Ableitung gleich Null sein muss. Somit ist für die erste Funktion f_1 zu fordern: $f_1(0) = 2,05; \ f_1(1) = 3,5; \ f_1(2) = 3,8; \ f_1(2) = 0.$ Durch Lösen des Gleichungssystems mit dem Rechner ergibt sich $a = \frac{11}{80}, b = -\frac{79}{80}, c = \frac{23}{10} \ und \ d = \frac{41}{20}.$ Damit lautet f_1 : $f_1(x) = 0,1375x^3 - 0,9875x^2 + 2,3x + 2,05$. Für den nächsten Abschnitt fordere ich für f_2 die Eigenschaften $f_2(2) = 3,8; \ f_2(5,15) = 2,3; \ f_2(2) = 0; \ f_2(5,15) = 0, \ da der Graph durch den Tiefpunkt B(5,15/2,3) verläuft. 1 Für den letzten Abschnitt wird f_3 mit f_3(5,15) = 2,3, \ f_3(7) = 2,75, \ f_3(5,15) = 0, \ f_3(7) = 0 gewählt, da ich als Punkt des Graphen am rechten Bildrand T(7/2,75) ablese und der Graph dort eine waagerechte Tangente zu haben scheint. Der Rechner liefert die Lösungen f_2(x) = 0,0960x^3 - 1,0294x^2 + 2,9658x + 1,2181 \ und f_3(x) = -0,1421x^3 + 2,5906x^2 - 15,3728x + 32,1773.$	ung
des Bildes. Ferner sei eine Längeneinheit durch den Abstand benachbarter Gitterlinien definiert. Die drei gesuchten ganzrationalen Funktionen dritten Grades lassen sich durch Funktionsgleichungen der Form $f_1(x) = ax^3 + bx^2 + cx + d \ , \ f_2(x) = ex^3 + fx^2 + gx + h$ sowie $f_3(x) = rx^3 + sx^2 + tx + u$ beschreiben. Jeder Funktionsterm enthält vier Parameter. Um diese zu bestimmen sind jeweils vier Gleichungen (Bedingungen) aufzustellen. Ein Beispielansatz: Der erste Straßenabschnitt soll durch den Graphen von f_1 angenähert werden: Die Straße kommt etwa bei S(0/2,05) ins Bild. Ferner verläuft der Graph durch den Punkt P(1/3,5) und den Hochpunkt A(2/3,8), an dem die erste Ableitung gleich Null sein muss. Somit ist für die erste Funktion f_1 zu fordern: $f_1(0) = 2,05; \ f_1(1) = 3,5; \ f_1(2) = 3,8; \ f_1(2) = 0.$ Durch Lösen des Gleichungssystems mit dem Rechner ergibt sich $a = \frac{11}{80}, b = -\frac{79}{80}, c = \frac{23}{10} \ und \ d = \frac{41}{20}.$ Damit lautet f_i : $f_1(x) = 0,1375x^3 - 0,9875x^2 + 2,3x + 2,05.$ Tür den nächsten Abschnitt fordere ich für f_2 die Eigenschaften $f_2(2) = 3,8; \ f_2(5,15) = 2,3; \ f_2(2) = 0; \ f_2(5,15) = 0, \ da der Graph durch den Tiefpunkt B(5,15/2,3) verläuft.$ Tür den letzten Abschnitt wird f_3 mit $f_3(5,15) = 2,3, \ f_3(7) = 2,75, \ f_3(5,15) = 0, \ f_3(7) = 0$ gewählt, da ich als Punkt des Graphen am rechten Bildrand T(7/2,75) ablese und der Graph dort eine waagerechte Tangente zu haben scheint.	I
sowie $f_3(x) = rx^3 + sx^2 + tx + u$ beschreiben. Jeder Funktionsterm enthält vier Parameter. Um diese zu bestimmen sind jeweils vier Gleichungen (Bedingungen) aufzustellen. Ein Beispielansatz: Der erste Straßenabschnitt soll durch den Graphen von f_1 angenähert werden: Die Straße kommt etwa bei $S(0/2,05)$ ins Bild. Ferner verläuft der Graph durch den Punkt $P(1/3,5)$ und den Hochpunkt $A(2/3,8)$, an dem die erste Ableitung gleich Null sein muss. Somit ist für die erste Funktion f_1 zu fordern: $f_1(0) = 2,05$; $f_1(1) = 3,5$; $f_1(2) = 3,8$; $f_1(2) = 0$. Durch Lösen des Gleichungssystems mit dem Rechner ergibt sich $a = \frac{11}{80}, b = -\frac{79}{80}, c = \frac{23}{10}$ $und d = \frac{41}{20}$. Damit lautet f_1 : $f_1(x) = 0,1375x^3 - 0,9875x^2 + 2,3x + 2,05$. Für den nächsten Abschnitt fordere ich für f_2 die Eigenschaften $f_2(2) = 3,8$; $f_2(5,15) = 2,3$; $f_2(2) = 0$; $f_2(5,15) = 0$, da der Graph durch den Tiefpunkt $B(5,15/2,3)$ verläuft. Für den letzten Abschnitt wird f_3 mit $f_3(5,15) = 2,3$, $f_3(7) = 2,75$, $f_3(5,15) = 0$, $f_3(7) = 0$ gewählt, da ich als Punkt des Graphen am rechten Bildrand $T(7/2,75)$ ablese und der Graph dort eine waagerechte Tangente zu haben scheint. Der Rechner liefert die Lösungen $f_2(x) = 0,0960x^3 - 1,0294x^2 + 2,9658x + 1,2181$ und $f_3(x) = -0,1421x^3 + 2,5906x^2 - 15,3728x + 32,1773$.	
sowie $f_3(x) = rx^3 + sx^2 + tx + u$ beschreiben. Jeder Funktionsterm enthält vier Parameter. Um diese zu bestimmen sind jeweils vier Gleichungen (Bedingungen) aufzustellen. <i>Ein Beispielansatz:</i> Der erste Straßenabschnitt soll durch den Graphen von f_1 angenähert werden: Die Straße kommt etwa bei S(0/2,05) ins Bild. Ferner verläuft der Graph durch den Punkt P(1/3,5) und den Hochpunkt A(2/3,8), an dem die erste Ableitung gleich Null sein muss. Somit ist für die erste Funktion f_1 zu fordern: $f_1(0) = 2,05; \ f_1(1) = 3,5; \ f_1(2) = 3,8; \ f_1^{'}(2) = 0.$ Durch Lösen des Gleichungssystems mit dem Rechner ergibt sich $a = \frac{11}{80}, b = -\frac{79}{80}, c = \frac{23}{10} \ und \ d = \frac{41}{20}.$ Damit lautet f_7 : $f_1(x) = 0,1375x^3 - 0,9875x^2 + 2,3x + 2,05.$ Für den nächsten Abschnitt fordere ich für f_2 die Eigenschaften $f_2(2) = 3,8; \ f_2(5,15) = 2,3; \ f_2(2) = 0; \ f_2(5,15) = 0$, da der Graph durch den Tiefpunkt B(5,15/2,3) verläuft. Für den letzten Abschnitt wird f_3 mit $f_3(5,15) = 2,3, \ f_3(7) = 2,75, \ f_3^{'}(5,15) = 0, \ f_3^{'}(7) = 0$ gewählt, da ich als Punkt des Graphen am rechten Bildrand T(7/2,75) ablese und der Graph dort eine waagerechte Tangente zu haben scheint. Der Rechner liefert die Lösungen $f_2(x) = 0,0960x^3 - 1,0294x^2 + 2,9658x + 1,2181 \ und$ $f_3(x) = -0,1421x^3 + 2,5906x^2 - 15,3728x + 32,1773.$	
sind jeweils vier Gleichungen (Bedingungen) aufzustellen. Ein Beispielansatz: Der erste Straßenabschnitt soll durch den Graphen von f_1 angenähert werden: Die Straße kommt etwa bei $S(0/2,05)$ ins Bild. Ferner verläuft der Graph durch den Punkt $P(1/3,5)$ und den Hochpunkt $A(2/3,8)$, an dem die erste Ableitung gleich Null sein muss. Somit ist für die erste Funktion f_1 zu fordern: $f_1(0)=2,05; \ f_1(1)=3,5; \ f_1(2)=3,8; \ f_1^{'}(2)=0$. Durch Lösen des Gleichungssystems mit dem Rechner ergibt sich $a=\frac{11}{80}, b=-\frac{79}{80}, c=\frac{23}{10} \ und \ d=\frac{41}{20}.$ Damit lautet f_1 : $f_1(x)=0,1375x^3-0,9875x^2+2,3x+2,05$. 1 Für den nächsten Abschnitt fordere ich für f_2 die Eigenschaften $f_2(2)=3,8; \ f_2(5,15)=2,3; \ f_2(2)=0; \ f_2(5,15)=0$, da der Graph durch den Tiefpunkt $B(5,15/2,3)$ verläuft. 1 Für den letzten Abschnitt wird f_3 mit $f_3(5,15)=2,3, \ f_3(7)=2,75, \ f_3^{'}(5,15)=0, \ f_3^{'}(7)=0$ gewählt, da ich als Punkt des Graphen am rechten Bildrand $T(7/2,75)$ ablese und der Graph dort eine waagerechte Tangente zu haben scheint. 1 Der Rechner liefert die Lösungen $f_2(x)=0,0960x^3-1,0294x^2+2,9658x+1,2181$ und $f_3(x)=-0,1421x^3+2,5906x^2-15,3728x+32,1773$.	
werden: Die Straße kommt etwa bei $S(0/2,05)$ ins Bild. Ferner verläuft der Graph durch den Punkt $P(1/3,5)$ und den Hochpunkt $A(2/3,8)$, an dem die erste Ableitung gleich Null sein muss. Somit ist für die erste Funktion f_1 zu fordern: $f_1(0) = 2,05$; $f_1(1) = 3,5$; $f_1(2) = 3,8$; $f_1(2) = 0$. Durch Lösen des Gleichungssystems mit dem Rechner ergibt sich $a = \frac{11}{80}, b = -\frac{79}{80}, c = \frac{23}{10} \text{ und } d = \frac{41}{20}.$ Damit lautet f_1 : $f_1(x) = 0,1375x^3 - 0,9875x^2 + 2,3x + 2,05$. Für den nächsten Abschnitt fordere ich für f_2 die Eigenschaften $f_2(2) = 3,8$; $f_2(5,15) = 2,3$; $f_2(2) = 0$; $f_2(5,15) = 0$, da der Graph durch den Tiefpunkt $B(5,15/2,3)$ verläuft. Für den letzten Abschnitt wird f_3 mit $f_3(5,15) = 2,3$, $f_3(7) = 2,75$, $f_3(5,15) = 0$, $f_3(7) = 0$ gewählt, da ich als Punkt des Graphen am rechten Bildrand $T(7/2,75)$ ablese und der Graph dort eine waagerechte Tangente zu haben scheint. Der Rechner liefert die Lösungen $f_2(x) = 0,0960x^3 - 1,0294x^2 + 2,9658x + 1,2181$ und $f_3(x) = -0,1421x^3 + 2,5906x^2 - 15,3728x + 32,1773$.	
Ferner verläuft der Graph durch den Punkt P(1/3,5) und den Hochpunkt A(2/3,8), an dem die erste Ableitung gleich Null sein muss. Somit ist für die erste Funktion f_1 zu fordern: $f_1(0) = 2,05$; $f_1(1) = 3,5$; $f_1(2) = 3,8$; $f_1(2) = 0$. Durch Lösen des Gleichungssystems mit dem Rechner ergibt sich $a = \frac{11}{80}, b = -\frac{79}{80}, c = \frac{23}{10} \ und \ d = \frac{41}{20}.$ Damit lautet f_1 : $f_1(x) = 0,1375x^3 - 0,9875x^2 + 2,3x + 2,05$. Für den nächsten Abschnitt fordere ich für f_2 die Eigenschaften $f_2(2) = 3,8$; $f_2(5,15) = 2,3$; $f_2(2) = 0$; $f_2(5,15) = 0$, da der Graph durch den Tiefpunkt B(5,15/2,3) verläuft. Für den letzten Abschnitt wird f_3 mit $f_3(5,15) = 2,3$, $f_3(7) = 2,75$, $f_3(5,15) = 0$, $f_3(7) = 0$ gewählt, da ich als Punkt des Graphen am rechten Bildrand T(7/2,75) ablese und der Graph dort eine waagerechte Tangente zu haben scheint. Der Rechner liefert die Lösungen $f_2(x) = 0,0960x^3 - 1,0294x^2 + 2,9658x + 1,2181$ und $f_3(x) = -0,1421x^3 + 2,5906x^2 - 15,3728x + 32,1773$.	
Durch Lösen des Gleichungssystems mit dem Rechner ergibt sich $a = \frac{11}{80}, b = -\frac{79}{80}, c = \frac{23}{10} \ und \ d = \frac{41}{20}.$ Damit lautet f_1 : $f_1(x) = 0.1375x^3 - 0.9875x^2 + 2.3x + 2.05$. Für den nächsten Abschnitt fordere ich für f_2 die Eigenschaften $f_2(2) = 3.8$; $f_2(5.15) = 2.3$; $f_2(2) = 0$; $f_2(5.15) = 0$, da der Graph durch den Tiefpunkt B(5.15/2.3) verläuft. Für den letzten Abschnitt wird f_3 mit $f_3(5.15) = 2.3$, $f_3(7) = 2.75$, $f_3(5.15) = 0$, $f_3(7) = 0$ gewählt, da ich als Punkt des Graphen am rechten Bildrand T(7/2,75) ablese und der Graph dort eine waagerechte Tangente zu haben scheint. 1 Der Rechner liefert die Lösungen $f_2(x) = 0.0960x^3 - 1.0294x^2 + 2.9658x + 1.2181$ und $f_3(x) = -0.1421x^3 + 2.5906x^2 - 15.3728x + 32.1773$.	
Durch Lösen des Gleichungssystems mit dem Rechner ergibt sich $a = \frac{11}{80}, b = -\frac{79}{80}, c = \frac{23}{10} \ und \ d = \frac{41}{20}.$ Damit lautet f_1 : $f_1(x) = 0.1375x^3 - 0.9875x^2 + 2.3x + 2.05$. Für den nächsten Abschnitt fordere ich für f_2 die Eigenschaften $f_2(2) = 3.8$; $f_2(5.15) = 2.3$; $f_2(2) = 0$; $f_2(5.15) = 0$, da der Graph durch den Tiefpunkt B(5,15/2,3) verläuft. Für den letzten Abschnitt wird f_3 mit $f_3(5.15) = 2.3$, $f_3(7) = 2.75$, $f_3(5.15) = 0$, $f_3(7) = 0$ gewählt, da ich als Punkt des Graphen am rechten Bildrand T(7/2,75) ablese und der Graph dort eine waagerechte Tangente zu haben scheint. 1 Der Rechner liefert die Lösungen $f_2(x) = 0.9960x^3 - 1.0294x^2 + 2.9658x + 1.2181$ und $f_3(x) = -0.1421x^3 + 2.5906x^2 - 15.3728x + 32.1773$.	
Damit lautet f_1 : $f_1(x) = 0,1375x^3 - 0,9875x^2 + 2,3x + 2,05$. Für den nächsten Abschnitt fordere ich für f_2 die Eigenschaften $f_2(2) = 3,8$; $f_2(5,15) = 2,3$; $f_2(2) = 0$; $f_2(5,15) = 0$, da der Graph durch den Tiefpunkt B(5,15/2,3) verläuft. Für den letzten Abschnitt wird f_3 mit $f_3(5,15) = 2,3$, $f_3(7) = 2,75$, $f_3(5,15) = 0$, $f_3(7) = 0$ gewählt, da ich als Punkt des Graphen am rechten Bildrand T(7/2,75) ablese und der Graph dort eine waagerechte Tangente zu haben scheint. Der Rechner liefert die Lösungen $f_2(x) = 0,0960x^3 - 1,0294x^2 + 2,9658x + 1,2181$ und $f_3(x) = -0,1421x^3 + 2,5906x^2 - 15,3728x + 32,1773$.	
$f_2(2) = 3,8; \ f_2(5,15) = 2,3; \ f_2(2) = 0; \ f_2(5,15) = 0 \ , \ da \ der \ Graph \ durch \ den \ Tiefpunkt \ B(5,15/2,3) \ verläuft.$ $F \ddot{u}r \ den \ letzten \ Abschnitt \ wird \ f_3 \ mit \ f_3(5,15) = 2,3, \ f_3(7) = 2,75, \ f_3(5,15) = 0, \ f_3(7) = 0 \ gewählt, \ da \ ich \ als \ Punkt \ des \ Graphen \ am \ rechten \ Bildrand \ T(7/2,75) \ ablese \ und \ der \ Graph \ dort \ eine \ waagerechte \ Tangente \ zu \ haben \ scheint.$ $Der \ Rechner \ liefert \ die \ Lösungen \ f_2(x) = 0,0960x^3 - 1,0294x^2 + 2,9658x + 1,2181 \ und \ f_3(x) = -0,1421x^3 + 2,5906x^2 - 15,3728x + 32,1773 \ .$	
$f_3(5,15) = 2,3, f_3(7) = 2,75, f_3^{'}(5,15) = 0, f_3^{'}(7) = 0$ gewählt, da ich als Punkt des Graphen am rechten Bildrand T(7/2,75) ablese und der Graph dort eine waagerechte Tangente zu haben scheint. 1 Der Rechner liefert die Lösungen $\frac{f_2(x) = 0,0960x^3 - 1,0294x^2 + 2,9658x + 1,2181}{f_3(x) = -0,1421x^3 + 2,5906x^2 - 15,3728x + 32,1773}$	
Punkt des Graphen am rechten Bildrand T(7/2,75) ablese und der Graph dort eine waagerechte Tangente zu haben scheint. 1 Der Rechner liefert die Lösungen $\frac{f_2(x) = 0,0960x^3 - 1,0294x^2 + 2,9658x + 1,2181}{f_3(x) = -0,1421x^3 + 2,5906x^2 - 15,3728x + 32,1773}$	
Punkt des Graphen am rechten Bildrand T(7/2,75) ablese und der Graph dort eine waagerechte Tangente zu haben scheint. 1 Der Rechner liefert die Lösungen $\frac{f_2(x) = 0.0960x^3 - 1.0294x^2 + 2.9658x + 1.2181}{f_3(x) = -0.1421x^3 + 2.5906x^2 - 15.3728x + 32.1773}$	
$\frac{f_2(x) = 0,0960x^3 - 1,0294x^2 + 2,9658x + 1,2181}{f_3(x) = -0,1421x^3 + 2,5906x^2 - 15,3728x + 32,1773}$	
$f_3(x) = -0.1421x^3 + 2.5906x^2 - 15.3728x + 32.1773.$	
$\frac{J_3(x)0.1421x + 2.5900x - 15.5726x + 52.1773}{-1}$	
Da die Punkte aus der Graphik nur grob entnommen werden konnten, ist es statthaft, die Parameter adäquat zu runden.	

b)	Mathematische Lösung: Der Mittelabschnitt lässt sich durch einen um 2 Einheiten nach rechts verschobenen, auf 3 4 der normalen Höhe gestauchten und um 3,05 LE nach oben verschobenen cos – Graphen darstellen. Das Intervall zwischen 0 und π wird auf die Länge von 2 bis 5,15 gebracht, braucht also nicht verändert zu werden, da die Werte ja nur angenähert ablesbar sind. Daraus folgt $g(x) = 0.75\cos(x-2) + 3.05$.		1 1 1 2 (6)	
c)	Alternative Lösung durch Probieren mit CAS, z. B. im Graphik-Modus. Die Funktionen f_1 , f_2 und f_3 aus a) sind abschnittsweise zu integrieren.		(0)	
	Die Summe der Integralwerte gibt als Maßzahl den Inhalt der Fläche an, die vom zusammengesetzten Graphen und der x-Achse in den Grenzen von 0 bis 7 eingeschlossen ist.	1		
	$\int_{0}^{2} f_{1}(x) dx + \int_{2}^{5,15} f_{2}(x) dx + \int_{5,15}^{7} f_{3}(x) dx \approx 20,92$	2		
	1FE entspricht 2500m^2 . Folglich errechnen sich $20,92\cdot2500\text{ m}^2 = 52300\text{ m}^2 = 5,23\text{ ha und damit }5,23\cdot1500\text{ l} = 7845\text{ l}$. Man erzeugt etwa 7800 bis 7900 l Biodiesel.	1		
d)	Es sind abschnittsweise drei Bogenlängenintegrale zu berechnen.			
	$\int_{0}^{2} \sqrt{1 + (f_{1}(x))^{2}} + \int_{2}^{5,15} \sqrt{1 + (f_{2}(x))^{2}} + \int_{5,15}^{7} \sqrt{1 + (f_{3}(x))^{2}} \approx 8.3$		3	
	Da 1 LE fünfzig Meter entspricht, folgt für die Kosten 8,3 · 50 · 4000 € = 1660000 €.		1	
e)	Aus $2\frac{m}{c^2} = \frac{v^2}{r}$ folgt, dass die Radialbeschleunigung bei konstanter			
	Geschwindigkeit maximal ist, wenn r minimal ist. Es ist also ein absolutes Minimum der Funktion r zu bestimmen, wobei f = f_1 und $x \in [0,5;\ 1]$ zu beachten ist. Wenn $r(x)$ minimal ist, dann gilt $r'(x) = 0$.		2	
	Der Rechner zeigt, dass die Gleichung $r'(x) = 0$ im Intervall [0,5 ; 1] keine Lösung besitzt.		3	
	Daher sind hier die Intervallgrenzen 0,5 und 1 auf Randextrema zu untersuchen.			1
	Wegen $r(0,5) \approx 3,33$ und $r(1) \approx 1,67$ ist der Radius mit ca. 1,67LE $\approx 83,4$ m am Punkt B minimal.			
	Wegen $v = \sqrt{a \cdot r} = \sqrt{2 \frac{m}{s^2} \cdot 83,4m} \approx 12.9 \frac{m}{s} \approx 46.5 \frac{km}{h}$ ist damit das			
	$40 \frac{km}{h}$ -Schild für die Geschwindigkeitsbegrenzung zu wählen.			2
		12	15	3

Leistungskurs Mathematik CAS Thema: Analytische Geometrie

Aufgabe 3

Gegeben sind in einem kartesischen Koordinatensystem die Gerade g mit der

Gleichung
$$g: \vec{x} = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
 und die Gerade h durch die Punkte $A(1/3/-1)$ und

B(3|-1/3). E sei die Spiegelebene von A zu B.

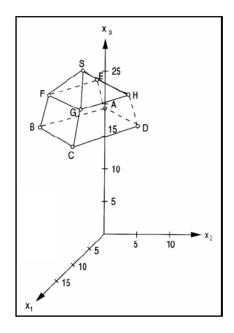
- a) Zeigen Sie, dass sich die Geraden *g* und *h* schneiden und bestimmen Sie den Schnittwinkel. Ermitteln Sie die Gleichungen der Kugeln, die die folgenden drei Bedingungen zugleich erfüllen:
 - die Mittelpunkte liegen auf der Geraden g,
 - der Radius beträgt 3 LE und
 - die Ebene E ist Tangentialebene [Kontrolle: E: $x_1 - 2x_2 + 2x_3 = 2$]. (12 P)
- b) Die Gerade g und die Ebene E schneiden sich im Punkt D.

 Bestimmen Sie den Abstand des Mittelpunktes der Strecke \overline{AD} zur Geraden h.
- c) Gegeben ist die Ebenenschar F_k mit $F_k: (k-1)x_1-2x_2+kx_3-k=0$ und $k\in IR\setminus\{0\}$. Untersuchen Sie F_k auf Schnittpunkte S_1 , S_2 und S_3 mit den Koordinatenachsen und diskutieren Sie eventuelle Lagebesonderheiten. (5 P)
- d) Es ist bekannt, dass ein reelles k > 1 existiert, für welches das Volumen V der Pyramide $OS_1S_2S_3$ mit den Punkten aus Teilaufgabe c) minimal wird. Bestimmen Sie dieses k. [Falls Sie in Teilaufgabe c) keine Punkte ermitteln konnten, verwenden Sie alternativ

$$S_1\left(\frac{k}{2} \mid 0 \mid 0\right); S_2\left(0 \mid \frac{k}{k-1} \mid 0\right); S_3\left(0 \mid 0 \mid 2\right).]$$
 (5 P)

	Erwartete Leistung		ordn	_
	Li wai tete Leistung	I	II	III
a)	Es sind g und h gegeben durch $g: \vec{x} = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ und			
	$h: \vec{x} = \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ -4 \\ 4 \end{pmatrix}.$	1		
	Da $A(1 3 -1)$ auf g liegt (für $s=-1$), schneiden sich die Geraden g und h.	1		
	Für den Schnittwinkel α zwischen g und h gilt $ \begin{vmatrix} 1 \\ 0 \\ -4 \\ 1 \end{vmatrix} $	2		
	Bestimmung der Gleichungen für die Kugeln, welche die drei Bedingungen erfüllen			
	Gesucht sind alle Punkte auf g, die den Abstand 3 LE zur Ebene E haben.			
	Für die Spiegelebene E von A zu B gilt: Der Vektor AB ist Richtungsvektor der Gerade h (s.o.) und Normalenvektor der Ebene E			
	(also auch $\frac{1}{2}\overrightarrow{AB} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$) und der Mittelpunkt P der Strecke \overline{AB} mit			
	$\overrightarrow{OP} = \overrightarrow{OA} + \frac{1}{2}\overrightarrow{AB} = \begin{pmatrix} 2\\1\\1 \end{pmatrix}$ liegt in der Ebene.			
	Es folgt $E: \begin{bmatrix} \vec{x} - \begin{pmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \end{bmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = 0.$	3		
	Unter Verwendung der Hesse'schen Normalform ergibt sich als Abstandsansatz			

	Erwartete Leistung				
		I	II	III	
	$\begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix} + s \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \end{bmatrix} \cdot \frac{1}{\sqrt{9}} \cdot \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = 3$	1			
	$\Leftrightarrow \left[\begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right] \cdot \frac{1}{3} \cdot \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = 3$				
	$\Leftrightarrow \left \frac{1}{3} \cdot (-6 + 3s) \right = 3 \Leftrightarrow s = 5 \lor s = -1.$		2		
	Durch Einsetzen der ermittelten Werte in den Geradenterm erhält man $\overrightarrow{OM_1} = \begin{pmatrix} 7 \\ 3 \\ 5 \end{pmatrix} \text{ und } \overrightarrow{OM_2} = \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix} \text{ und somit für die gesuchten}$				
	Kugelgleichungen				
	$K_1: \begin{bmatrix} \vec{x} - \begin{pmatrix} 7 \\ 3 \\ 5 \end{bmatrix} \end{bmatrix}^2 = 9$ und $K_2: \begin{bmatrix} \vec{x} - \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix} \end{bmatrix}^2 = 9$.	2			
b)	D wird berechnet durch Einsetzen des Geradenterms von g in die Ebenengleichung von E :				
	$\begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix} + s \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = 0 \Leftrightarrow \begin{bmatrix} 0 \\ 2 \\ -1 \end{pmatrix} + s \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = 0$				
	\Leftrightarrow $-6+3s=0 \Leftrightarrow s=2$. Das Einsetzen in die Geradengleichung ergibt $D(4 3 2)$.	2			
	Damit ist der Mittelpunkt der Strecke \overline{AD} dann $M_{AD}(2,5 \mid 3 \mid 0,5)$.	_	1		
	Die orthogonale Ebene E_1 zur Geraden h , die M_{AD} enthält, ist gegeben durch				
	$\mathbf{E}_{1} : \begin{bmatrix} \vec{\mathbf{x}} - \begin{pmatrix} 2,5 \\ 3 \\ 0,5 \end{bmatrix} \end{bmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = 0.$		1		


	Erwartete Leistung		ung ung	
	g	I	II	III
	Das Einsetzen des Geradenterms von h in die Normalenform von E_1 liefert die Gleichung $\begin{bmatrix} 1+t \\ 3-2t \\ -1+2t \end{bmatrix} - \begin{pmatrix} 2,5 \\ 3 \\ 0,5 \end{bmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = 0$. Daraus ergibt sich		1	
	$-1.5+t+4t-3+4t=0 \Leftrightarrow 9t=4.5 \Leftrightarrow t=\frac{1}{2}$. Damit ist der Schnittpunkt F der Geraden h mit der Ebene E_1 $F(1.5 \mid 2 \mid 0)$.		2	
	Für den Abstand d des Punktes M_{AD} zum Punkt F folgt $d = \left \overrightarrow{FM}_{AD} \right = \begin{vmatrix} 2.5 \\ 3 \\ 0.5 \end{vmatrix} - \begin{pmatrix} 1.5 \\ 2 \\ 0 \end{vmatrix} = \begin{vmatrix} 1 \\ 1 \\ 0.5 \end{vmatrix} = \sqrt{1+1+0.25} = 1.5.$		1	
c)	Schnittpunkte der Ebenenschar mit der			
	1.Koordinatenachse: Ich setze x_2 , $x_3 = 0$. Dann folgt			
	$(k-1)x_1 - k = 0 \Leftrightarrow x_1 = \frac{k}{k-1} \Rightarrow S_1\left(\frac{k}{k-1}\big 0\big 0\right).$		1	
	Für $k = 1$ existiert kein Schnittpunkt mit der x_1 -Achse, d.h. F_1 ist parallel zur x_1 -Achse.		1	
	2. Koordinatenachse: Ich setze x_1 , $x_3 = 0$. Dann folgt $-2x_2 - k = 0 \Leftrightarrow x_2 = -\frac{k}{2} \Rightarrow S_2\left(0 \mid \frac{-k}{2} \mid 0\right).$		1	
	3. Koordinatenachse: Ich setze x_1 , $x_2 = 0$. Dann folgt $k x_3 - k = 0 \Leftrightarrow x_3 = 1 \Rightarrow S_3(0 \mid 0 \mid 1)$.		1	
	Der Schnittpunkt mit der x_3 -Achse ist unabhängig von k .		1	

	Erwartete Leistung		ordni	_
	Erwartete Leistung	I	II	III
d)	Gesucht ist der reelle Wert $k > 1$, für den $V(k)$ minimal ist.			
	Das Volumen einer Pyramide ist $\frac{1}{6} \cdot \left (\overrightarrow{OS_1} \times \overrightarrow{OS_2}) \cdot \overrightarrow{OS_3} \right $.			
	$V(k) = \frac{1}{6} \cdot \left \left(\overrightarrow{OS_1} \times \overrightarrow{OS_2} \right) \cdot \overrightarrow{OS_3} \right $			
	$ = \frac{1}{6} \cdot \left \left(\frac{\frac{k}{k-1}}{0} \right) \times \left(\frac{0}{-\frac{k}{2}} \right) \cdot \left(\frac{0}{0} \right) \right = \frac{1}{6} \cdot \left \frac{0}{0} - \frac{k^2}{2(k-1)} \right \cdot \left(\frac{0}{0} \right) = \frac{1}{6} \cdot \left -\frac{k^2}{2(k-1)} \right $			
	$=\frac{k^2}{12k-12}$		2	
	Zur Überprüfung der notwendigen Bedingung für die Existenz von lokalen Extrema verwende ich die 1. Ableitung von V.			
	$V'(k) = \frac{2k \cdot (12k - 12) - k^2 \cdot 12}{(12k - 12)^2} = \frac{12k^2 - 24k}{(12k - 12)^2}$			
	Es folgt $V'(k) = 0$, also $12k^2 - 24k = 0$ und somit $k = 0 \lor k = 2$. Da $k > 1$ sein muss, folgt $k = 2$.			
	Weil nur ein $k > 1$ die notwendige Bedingung erfüllt, muss bei $k = 2$ das Volumen minimal sein.			3
		12	15	3

Thema: Analytische Geometrie

Aufgabe 4

Ein Kirchturmdach besteht wie in der nebenstehenden Abbildung dargestellt aus einem Pyramidenstumpf mit quadratischer Grund- und Deckfläche, auf die eine gerade Pyramide aufgesetzt ist. Als Eckpunkte sind die Punkte A(0|0|19), B(6|- 6|19), C(12|0|19), D(6|6|19), F(6|- 4|23), G(10|0|23) und S(6|0|27) bekannt. (1 m entspricht einer Längeneinheit.)

 a) Geben Sie die Koordinaten der Punkte E und H an!
 Bestimmen Sie eine Koordinatengleichung der Ebene E₁, welche die Dachfläche FGS enthält.

Welchen Winkel schließt die Ebene E_2 durch die Punkte B, C, G und F mit der Ebene E_1 ein?

(Falls Sie keine Ebenengleichung für die Ebene E_1 erhalten, nutzen Sie E_1 : $x_1 - x_2 + x_3 = 33$.)

(10 P)

Zur Vorbereitung des Jubiläumskirchweihfestes diskutiert der Kirchenvorstand mehrere außergewöhnliche Vorschläge. Ein Vorschlag sieht ein großes Dreieckssegel vor, das von der Kirchturmspitze bis zum Boden reichen und direkt auf der Dreiecksfläche FGS aufliegen soll.

- b) Zur Befestigung des Dreieckssegels verlaufen Spannseile von S über F bzw. von S über G gradlinig zum Boden.
 - Berechnen Sie deren Verankerungspunkte V_F und V_G am Boden. [Kontrolle V_G (33 | 0 | 0)]
 - Berechnen Sie den Flächeninhalt der dreieckigen Segelfläche V_FV_GS .

Thema: Analytische Geometrie

c) Von der Ecke T($6 \mid -6 \mid 0$) des Turmes direkt unterhalb von B am Boden ausgehend soll ein Sicherungsdrahtseil zum Spannseil SV_G gespannt und dort senkrecht befestigt werden. Entscheiden Sie, ob sich eine Strebe, die entlang der Geraden

$$g: \vec{x} = \begin{pmatrix} 9 \\ -3 \\ 0 \end{pmatrix} + r \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$
 verläuft, und das Sicherungsdrahtseil stören

und bestimmen Sie ggf. den Abstand zwischen der Strebe und dem Drahtseil.

(9 P)

- d) Auf der Grundfläche ABCD des Kirchendaches befinden sich Verankerungspunkte P_n mit P_n (6 | n | 19) und
 - $n \in \{-5; -4; ...; 4; 5\}$. Von der Spitze des Kirchendaches S soll ein Kabel zu einem der Verankerungspunkte P_n gezogen werden. Geben Sie eine Formel für die Schar der Geraden g_n an, auf denen die Strecken $\overline{P_nS}$ liegen.

Im Dach am Punkt L(6 \mid 0 \mid 26) ist ein Scheinwerfer montiert. Geben Sie eine allgemeine Formel für den Abstand von L zur Geradenschar g_n an.

(4 P)

	Erwartete Leistung	Zuordnun Bewertun			
	g	ı	II	Ш	
a)	Es ist $\overrightarrow{FG} = \begin{pmatrix} 10 - 6 \\ 0 - (-4) \\ 23 - 23 \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \\ 0 \end{pmatrix}$ und $ \overrightarrow{FG} = \sqrt{16 + 16} = 4\sqrt{2}$.	1			
	Damit ist $\overrightarrow{OE} = \overrightarrow{OF} + 4\sqrt{2} \frac{1}{\left \overrightarrow{BA} \right } \overrightarrow{BA} = \begin{pmatrix} 6 \\ -4 \\ 23 \end{pmatrix} + \frac{4\sqrt{2}}{6\sqrt{2}} \begin{pmatrix} -6 \\ 6 \\ 0 \end{pmatrix}$, also	1			
	$\overrightarrow{OE} = \begin{pmatrix} 2 \\ 0 \\ 23 \end{pmatrix}, \text{ d.h. } E(2/0/23).$	1			
	$\overrightarrow{OH} = \overrightarrow{OE} + \overrightarrow{FG} = \begin{pmatrix} 2 \\ 0 \\ 23 \end{pmatrix} + \begin{pmatrix} 4 \\ 4 \\ 0 \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \\ 23 \end{pmatrix}, \text{ also } H(6/4/23).$	1			
	Aus der Ebene $E_1: \vec{x} = \begin{pmatrix} 6 \\ 0 \\ 27 \end{pmatrix} + s \begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}; s, t \in IR $ (es wurden für				
	\overrightarrow{SF} und \overrightarrow{SG} vereinfachte Spannvektoren benutzt) ergibt sich die Koordinatenform der Ebene mit dem Normalenvektor $\overrightarrow{n_1} = \begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \text{ wie folgt: } E_1 : x_1 - x_2 + x_3 = 33.$	3			
	Für die Berechnung des eingeschlossenen Winkels genügt es den Normalenvektor von E_2 anzugeben (es werden wie oben vereinfachte Vektoren benutzt). $\overrightarrow{n_2} = \frac{1}{6} \overrightarrow{BC} \times \frac{1}{2} \overrightarrow{BF} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$		2		
	$\cos \alpha = \frac{\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}}{\sqrt{1+1+1} \cdot \sqrt{4+4+1}} = \frac{2+2+1}{3\sqrt{3}} = \frac{5}{3\sqrt{3}} \Rightarrow \alpha \approx 15,79^{\circ}.$		1		

b)				
	Für die Gerade durch S und F gilt $SF: \vec{x} = \begin{pmatrix} 6 \\ 0 \\ 27 \end{pmatrix} + r \begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix}$. (Richtungsvektor vereinfacht.) Die x_3 -Komponente wird Null, wenn $r = 27$ ist, also ist der Verankerungspunkt V_F am Boden V_F (6 / -27 / 0).	2		
	Für die Gerade durch S und G gilt $SG: \vec{x} = \begin{pmatrix} 6 \\ 0 \\ 27 \end{pmatrix} + r \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$. (Richtungsvektor vereinfacht.) Die x_3 -Komponente wird Null, wenn auch $r = 27$ ist, also ist der Verankerungspunkt V_G am Boden $V_G(33/0/0)$.	2		
	Der Flächeninhalt lässt sich zum Beispiel mithilfe des Kreuzproduktes ermitteln.	1		
	$\begin{vmatrix} A &=& \frac{1}{2} & \left \overrightarrow{SV_F} \times \overrightarrow{SV_G} \right \\ &=& \frac{1}{2} & \left \begin{pmatrix} 0 \\ -27 \\ -27 \end{pmatrix} \times \begin{pmatrix} 27 \\ 0 \\ -27 \end{pmatrix} \right = \frac{1}{2} & \left \begin{pmatrix} 27^2 \\ -27^2 \\ 27^2 \end{pmatrix} \right = \frac{1}{2} & \sqrt{3 \cdot 27^4} \end{vmatrix}$			
	also $A=\frac{27^2}{2}\sqrt{3}\approx 631{,}33$. Das beschriebene Segel hat einen Flächeninhalt von 631,33 m².		2	
c)	Aus der Geraden SV_G : $\vec{x} = \begin{pmatrix} 6 \\ 0 \\ 27 \end{pmatrix} + r \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ ergibt sich eine zum			
	Spannseil SV_G orthogonale Ebene durch T: E_T : $\begin{bmatrix} \vec{x} - \begin{pmatrix} 6 \\ -6 \\ 0 \end{bmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = 0$. Diese Ebene E_T und die Gerade SV_G schneiden sich in einem Punkt P .		1	

2

1

1

1

2

1

Leistungskurs Mathematik CAS

Thema: Analytische Geometrie

Berechnung von P:

$$\begin{bmatrix} 6 \\ 0 \\ 27 \end{bmatrix} + r \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} - \begin{pmatrix} 6 \\ -6 \\ 0 \end{bmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = 0 \Leftrightarrow r + 0 + (27 - r) \cdot (-1) = 0 \Leftrightarrow r = 13,5$$

Es folgt: P(19,5 | 0 | 13,5).

Damit kann das Sicherungsseil durch die Gerade s mit der Gleichung

s:
$$\vec{x} = \vec{OT} + u \vec{TP} = \begin{pmatrix} 6 \\ -6 \\ 0 \end{pmatrix} + u \begin{pmatrix} 13.5 \\ 6 \\ 13.5 \end{pmatrix}$$
 angegeben werden, oder mit

vereinfachtem Richtungsvektor s:
$$\vec{x} = \begin{pmatrix} 6 \\ -6 \\ 0 \end{pmatrix} + u \begin{pmatrix} 9 \\ 4 \\ 9 \end{pmatrix}$$
.

Zu untersuchen ist jetzt, ob sich Sicherungsseil und Strebe beeinflussen. Zur Untersuchung der Geraden *s* und *g* werden die Geradenterme gleichgesetzt:

$$\begin{pmatrix} 6 \\ -6 \\ 0 \end{pmatrix} + u \begin{pmatrix} 9 \\ 4 \\ 9 \end{pmatrix} = \begin{pmatrix} 9 \\ -3 \\ 0 \end{pmatrix} + r \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$
. Aus den ersten beiden Komponenten

erhält man sofort 13 u = 6, also $u = \frac{6}{13}$ und damit $r = \frac{15}{13}$, aber die dritte

Gleichung ist dann nicht erfüllt, also gibt es kein Paar (r; u), das alle drei Gleichungen erfüllt. Die Geraden s und g sind windschief.

Wegen
$$\begin{pmatrix} 9\\4\\9 \end{pmatrix} \times \begin{pmatrix} 1\\-1\\1 \end{pmatrix} = \begin{pmatrix} 13\\0\\-13 \end{pmatrix}$$
 kann der Abstand d durch

$$d = \begin{bmatrix} 9 \\ -3 \\ 0 \end{bmatrix} - \begin{bmatrix} 6 \\ -6 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \cdot \frac{1}{\sqrt{2}} = \frac{3}{\sqrt{2}} \approx 2,12 \text{ angegeben werden.}$$

Da die Längeneinheit m ist, beeinflussen sich Strebe und Drahtseil nicht, da der geringste Abstand über 2 m beträgt.

d)	Es gilt g_n : $\vec{x} = \begin{pmatrix} 6 \\ 0 \\ 27 \end{pmatrix} + r \begin{pmatrix} 6-6 \\ n-0 \\ 19-27 \end{pmatrix} = \begin{pmatrix} 6 \\ 0 \\ 27 \end{pmatrix} + r \begin{pmatrix} 0 \\ n \\ -8 \end{pmatrix}$; $r \in IR$		1					
	Abstand der Geraden vom Punkt L : Die orthogonale Ebene E_3 zur den Geraden g_n , die L enthalten, ist $E_3: \begin{bmatrix} \vec{x} - \begin{pmatrix} 6 \\ 0 \\ 26 \end{bmatrix} \end{bmatrix} \begin{pmatrix} 0 \\ n \\ -8 \end{bmatrix} = 0.$							
	Einsetzen der Geradenterme von g_n in die Normalenform von E_3 liefert die							
	Gleichung $\begin{bmatrix} 6 \\ rn \\ 27-8r \end{bmatrix} - \begin{pmatrix} 6 \\ 0 \\ 26 \end{bmatrix} \cdot \begin{pmatrix} 0 \\ n \\ -8 \end{pmatrix} = 0.$ Daraus ergibt sich							
	$r n^2 + 64 r - 8 = 0 \iff r = \frac{8}{n^2 + 64}$.							
	Damit sind die Schnittpunkte T_n der Geraden g_n mit der Ebene E_3 $T_n (6 \frac{8n}{n^2 + 64} 27 - \frac{64}{n^2 + 64}).$			1				
	Für die Abstände d_n des Punktes L zu den Punkten T_n folgt:							
	$d_{n} = \begin{vmatrix} 6 \\ \frac{8n}{n^{2} + 64} \\ 27 - \frac{64}{n^{2} + 64} \end{vmatrix} - \begin{pmatrix} 6 \\ 0 \\ 26 \end{vmatrix} = \begin{vmatrix} 0 \\ \frac{8n}{n^{2} + 64} \\ 1 - \frac{64}{n^{2} + 64} \end{vmatrix} = \sqrt{\frac{n^{2}}{n^{2} + 64}} = \frac{ n }{\sqrt{n^{2} + 64}}.$	10	45	1				
		12	15	3				

Thema: Stochastik

Aufgabe 5

Rund um den HSV

Der Hamburger SV trägt seine Heimspiele in der 57 000 Zuschauer fassenden Arena im Volkspark aus (siehe Abb. 1).

In der ersten Reihe des Blocks 3B (siehe Abb. 2) befinden sich 31 Plätze, von denen im letzten Saisonspiel 29 besetzt werden.

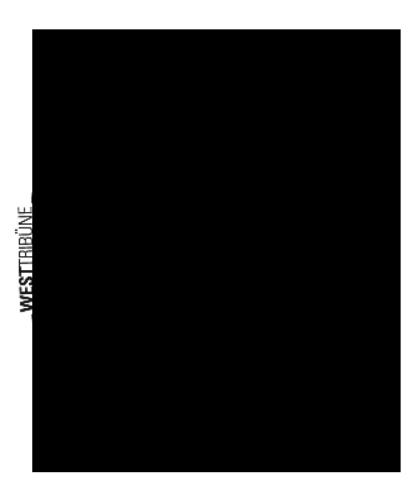


Abb. 1: Arena des HSV

Abb. 2: Block 3B

 Bestimmen Sie die Anzahl aller Möglichkeiten, wie sich die 29 Personen auf die 31 Plätze verteilen können.
 Bestimmen Sie ferner die Anzahl aller Möglichkeiten, wie sich die freien Plätze verteilen können.

(4 P)

- b) Die Bundesligastatistik über viele Jahre weist aus, dass im Mittel etwa 3 Tore pro Spiel (Spieldauer: 90 Minuten) fallen. Ein Zuschauer verlässt während der Spielzeit für 3 Minuten seinen Sitzplatz, um die Toilette aufzusuchen. Auf dem Weg überlegt er sich, ob er bis zu seiner Rückkehr ein Tor "verpasst" haben wird. Bestimmen Sie die Wahrscheinlichkeit, dass ausgerechnet in diesen 3 Minuten mindestens ein Tor fällt. Begründen Sie Ihre Wahl einer passenden Zufallsvariablen und ihrer Verteilung. Gehen Sie dabei insbesondere kritisch auf den Modellcharakter Ihrer Wahl ein.
- c) Ein Busunternehmen aus Flensburg bietet den Transport zum Stadion an. Es verfügt über zwei Busse mit insgesamt 92 Plätzen. Man kann einen Busplatz telefonisch oder per Internet buchen, aber erst beim Fahrtantritt zahlen. Der Andrang bei Fußballspielen ist erfahrungsgemäß groß, und das Angebot ist stets ausgebucht. Allerdings werden im Mittel nur 89 % der gebuchten Plätze tatsächlich wahrgenommen. Wegen der zu erwartenden Absagen von gebuchten Fahrten nimmt das Unternehmen deshalb 101 Plätze also mehr als vorhanden zur Buchung an. Berechnen Sie die Wahrscheinlichkeit, dass bei Fahrtantritt mehr

Plätzen abgewiesen werden müssen.

Bestimmen Sie die Maximalzahl der Buchungen, die der Unternehmer zulassen kann, so dass er mit einer Wehrscheinlichkeit von mindestens 95 % keine Beschwerden.

als 92 Fahrgäste erscheinen und damit Personen mit gebuchten

Unternehmer zulassen kann, so dass er mit einer Wahrscheinlichkeit von mindestens 95 % keine Beschwerden wegen Überbuchungen erhält.

(12 P)

(6 P)

d) Das Busunternehmen will erreichen, dass der Anteil der Absagen sinkt. Deshalb ändert es seine Vertragsbedingungen dahingehend, dass schon gleich bei der Buchung eine Anzahlung von 5 € zu zahlen ist, die bei Nichterscheinen nicht zurückgezahlt wird. Während der nächsten 1000 Buchungen soll untersucht werden, ob die neue Regelung zu einer Senkung der Absagerquote führt. Leiten Sie dazu eine Entscheidungsregel her. Gehen Sie dabei von einem Signifikanzniveau von 5% aus.

(8 P)

Thema: Stochastik

Gausssche Integralfunktion $\Phi(z) = \int\limits_{-\infty}^{z} \phi(x) \ dx$

z	Φ(-z)	Φ(z)	Z	Φ(-z)	Φ(z)	z	Ф(-z)	Φ(z)		Z	Φ(-z)	Φ(z)
0.01	0,	0,	0.70	0,	0,		0,	0,		2.24	0,	0,
0,01	4960	5040	0,76	2236	7764	1,51	0655	9345		2,26	0119	9881
0,02	4920	5080	0,77	2206	7794	1,52	0643	9357		2,27	0116	9884
0,03	4880	5120	0,78	2177	7823	1,53	0630	9370		2,28	0113	9887
0,04	4840	5160	0,79	2148	7852	1,54	0618	9382		2,29	0110	9890
0,05	4801	5199	0,80	2119	7881	1,55	0606	9394		2,30	0107	9893
0,06	4761	5239	0,81	2090	7910	1,56	0594	9406		2,31	0104	9896
0.07	4721	5279	0,82	2061	7939	1,57	0582	9418		2,32	0102	9898
0.08	4681	5319	0,83	2033	7967	1,58	0571	9429		2,33	0099	9901
0,09	4641	5359	0,84	2005	7995	1,59	0559	9441		2,34	0096	9904
0,10	4602	5398	0,85	1977	8023	1,60	0548	9452		2,35	0094	9906
0,11	4562	5438	0,86	1949	8051	1,61	0537	9463		2,36	0091	9909
0,11	4522	5478	0,87	1922	8078	1,62	0526	9474		2,37	0089	9911
0,13	4483	5517	0,88	1894	8106	1,63	0516	9484		2,38	0087	9913
0,14	4443	5557	0,89	1867	8133	1,64	0505	9495		2,39	0084	9916
0,15	4404	5596	0,90	1841	8159	1,65	0495	9505		2,40	0082	9918
0,16	4364	5636	0,91	1814	8186	1,66	0485	9515		2,41	0080	9920
0,17	4325	5675	0,92	1788	8212	1,67	0475	9525		2,42	0078	9922
0.18	4286	5714	0,93	1762	8238	1,68	0465	9535		2,43	0075	9925
0.19	4247	5753	0,94	1736	8264	1,69	0455	9545		2,44	0073	9927
0,20	4207	5793	0,95	1711	8289	1,70	0446	9554		2,45	0071	9929
0,21	4168	5832	0,96	1685	8315	1,71	0436	9564		2,46	0069	9931
	4129	5871	0,97	1660	8340			9573			0068	9932
0,22	4090	5910	0,97	1635	8365	1,72	0427 0418	9573		2,47 2,48	0066	9934
0,23						1,73						
0,24	4052	5948	0,99	1611	8389	1,74	0409	9591		2,49	0064	9936
0,25	4013	5987	1,00	1587	8413	1,75	0401	9599		2,50	0062	9938
0,26	3974	6026	1,01	1562	8438	1,76	0392	9608		2,51	0060	9940
0,27	3936	6064	1,02	1539	8461	1,77	0384	9616		2,52	0059	9941
0,28	3897	6103	1,03	1515	8485	1,78	0375	9625		2,53	0057	9943
0,29	3859	6141	1,04	1492	8508	1,79	0367	9633		2,54	0055	9945
0,30	3821	6179	1,05	1469	8531	1,80	0359	9641		2,55	0054	9946
0,31	3783	6217	1,06	1446	8554	1,81	0351	9649		2,56	0052	9948
0,32	3745	6255	1,07	1423	8577	1,82	0344	9656		2,57	0051	9949
0,33	3707	6293	1,08	1401	8599	1,83	0336	9664		2,58	0049	9951
0,33	3669	6331	1,08	1379	8621	1,84	0330	9671		2,59	0049	9952
0,35	3632	6368	1,10	1357	8643	1,85	0322	9678		2,60	0047	9953
0,36	3594	6406	1,11	1335	8665	1,86	0314	9686		2,61	0045	9955
0,37	3557	6443	1,12	1314	8686	1,87	0307	9693		2,62	0044	9956
0,38	3520	6480	1,13	1292	8708	1,88	0301	9699		2,63	0043	9957
0,39	3483	6517	1,14	1271	8729	1,89	0294	9706		2,64	0041	9959
0,40	3446	6554	1,15	1251	8749	1,90	0287	9713		2,65	0040	9960
0,41	3409	6591	1,16	1230	8770	1,91	0281	9719		2,66	0039	9961
0,42	3372	6628	1,17	1210	8790	1,92	0274	9726		2,67	0038	9962
0,43	3336	6664	1,18	1190	8810	1,93	0268	9732		2,68	0037	9963
0,44	3300	6700	1,19	1170	8830	1,94	0262	9738		2,69	0036	9964
0,45	3264	6736	1,20	1151	8849	1,95	0256	9744		2,70	0035	9965
100000000000000000000000000000000000000	100000000000000000000000000000000000000	100000000	9.000,000	0.0000000000000000000000000000000000000	8869	(0.088.9517	0250	9750			0034	9966
0,46	3228	6772	1,21	1131		1,96				2,71		
0,47	3192	6808	1,22	1112	8888	1,97	0244	9756		2,72	0033	9967
0,48	3156	6844	1,23	1093	8907	1,98	0239	9761		2,73	0032	9968
0,49	3121	6879	1,24	1075	8925	1,99	0233	9767		2,74	0031	9969
0,50	3085	6915	1,25	1056	8944	2,00	0228	9772		2,75	0030	9970
0,51	3050	6950	1,26	1038	8962	2,01	0222	9778		2,76	0029	9971
0,52	3015	6985	1,27	1020	8980	2,02	0217	9783		2,77	0028	9972
0,53	2981	7019	1,28	1003	8997	2,03	0212	9788		2,78	0027	9973
0,54	2946	7054	1,29	0985	9015	2,04	0207	9793		2,79	0026	9974
0,55	2912	7088	1,30	0968	9032	2,05	0202	9798		2,80	0026	9974
0,56	2877	7123	1,31	0951	9049	2,06	0197	9803		2,81	0025	9975
0,50	2843	7157	1,32	0934	9066	2,07	0192	9808		2,82	0023	9976
0,57	2810	7190	1,32	0934	9082	2,08	0192	9812		2,83	0024	9977
	2776	7224							V			9977
0,59		1224	1,34	0901	9099	2,09	0183	9817		2,84	0023	
0,60			1.25		9115	2,10	0179	9821	I	2,85	0022	9978
	2743	7257	1,35	0885					1		O.C.T.	encome.
0,61	2743 2709	7257 7291	1,36	0869	9131	2,11	0174	9826		2,86	0021	9979
0,61 0,62	2743 2709 2676	7257 7291 7324	1,36 1,37	0869 0853	9131 9147	2,12	0170	9830		2,87	0021	9979
0,61 0,62 0,63	2743 2709 2676 2643	7257 7291 7324 7357	1,36 1,37 1,38	0869 0853 0838	9131 9147 9162	2,12 2,13	0170 0166	9830 9834		2,87 2,88	0021 0020	9979 9980
0,61 0,62	2743 2709 2676 2643 2611	7257 7291 7324	1,36 1,37	0869 0853 0838 0823	9131 9147 9162 9177	2,12 2,13 2,14	0170	9830		2,87 2,88 2,89	0021 0020 0019	9979 9980 9981
0,61 0,62 0,63	2743 2709 2676 2643	7257 7291 7324 7357	1,36 1,37 1,38	0869 0853 0838	9131 9147 9162	2,12 2,13	0170 0166	9830 9834		2,87 2,88	0021 0020	9979 9980
0,61 0,62 0,63 0,64 0,65	2743 2709 2676 2643 2611 2578	7257 7291 7324 7357 7389 7422	1,36 1,37 1,38 1,39 1,40	0869 0853 0838 0823 0808	9131 9147 9162 9177 9192	2,12 2,13 2,14 2,15	0170 0166 0162 0158	9830 9834 9838 9842		2,87 2,88 2,89 2,90	0021 0020 0019 0019	9979 9980 9981
0,61 0,62 0,63 0,64 0,65 0,66	2743 2709 2676 2643 2611 2578 2546	7257 7291 7324 7357 7389 7422 7454	1,36 1,37 1,38 1,39 1,40 1,41	0869 0853 0838 0823 0808 0793	9131 9147 9162 9177 9192 9207	2,12 2,13 2,14 2,15 2,16	0170 0166 0162 0158 0154	9830 9834 9838 9842 9846		2,87 2,88 2,89 2,90 2,91	0021 0020 0019 0019 0018	9979 9980 9981 9981 9982
0,61 0,62 0,63 0,64 0,65 0,66 0,67	2743 2709 2676 2643 2611 2578 2546 2514	7257 7291 7324 7357 7389 7422 7454 7486	1,36 1,37 1,38 1,39 1,40 1,41 1,42	0869 0853 0838 0823 0808 0793 0778	9131 9147 9162 9177 9192 9207 9222	2,12 2,13 2,14 2,15 2,16 2,17	0170 0166 0162 0158 0154 0150	9830 9834 9838 9842 9846 9850		2,87 2,88 2,89 2,90 2,91 2,92	0021 0020 0019 0019 0018 0018	9979 9980 9981 9981 9982 9982
0,61 0,62 0,63 0,64 0,65 0,66 0,67 0,68	2743 2709 2676 2643 2611 2578 2546 2514 2483	7257 7291 7324 7357 7389 7422 7454 7486 7517	1,36 1,37 1,38 1,39 1,40 1,41 1,42 1,43	0869 0853 0838 0823 0808 0793 0778 0764	9131 9147 9162 9177 9192 9207 9222 9236	2,12 2,13 2,14 2,15 2,16 2,17 2,18	0170 0166 0162 0158 0154 0150 0146	9830 9834 9838 9842 9846 9850 9854		2,87 2,88 2,89 2,90 2,91 2,92 2,93	0021 0020 0019 0019 0018 0018 0017	9979 9980 9981 9981 9982 9982 9983
0,61 0,62 0,63 0,64 0,65 0,66 0,67 0,68 0,69	2743 2709 2676 2643 2611 2578 2546 2514 2483 2451	7257 7291 7324 7357 7389 7422 7454 7486 7517 7549	1,36 1,37 1,38 1,39 1,40 1,41 1,42 1,43 1,44	0869 0853 0838 0823 0808 0793 0778 0764 0749	9131 9147 9162 9177 9192 9207 9222 9236 9251	2,12 2,13 2,14 2,15 2,16 2,17 2,18 2,19	0170 0166 0162 0158 0154 0150 0146 0143	9830 9834 9838 9842 9846 9850 9854 9857		2,87 2,88 2,89 2,90 2,91 2,92 2,93 2,94	0021 0020 0019 0019 0018 0018 0017 0016	9979 9980 9981 9981 9982 9982 9983 9984
0,61 0,62 0,63 0,64 0,65 0,66 0,67 0,68 0,69 0,70	2743 2709 2676 2643 2611 2578 2546 2514 2483 2451 2420	7257 7291 7324 7357 7389 7422 7454 7486 7517 7549 7580	1,36 1,37 1,38 1,39 1,40 1,41 1,42 1,43 1,44	0869 0853 0838 0823 0808 0793 0778 0764 0749 0735	9131 9147 9162 9177 9192 9207 9222 9236 9251 9265	2,12 2,13 2,14 2,15 2,16 2,17 2,18 2,19 2,20	0170 0166 0162 0158 0154 0150 0146 0143 0139	9830 9834 9838 9842 9846 9850 9854 9857 9861		2,87 2,88 2,89 2,90 2,91 2,92 2,93 2,94 2,95	0021 0020 0019 0019 0018 0018 0017 0016 0016	9979 9980 9981 9981 9982 9982 9983 9984 9984
0,61 0,62 0,63 0,64 0,65 0,66 0,67 0,68 0,69 0,70	2743 2709 2676 2643 2611 2578 2546 2514 2483 2451 2420 2389	7257 7291 7324 7357 7389 7422 7454 7486 7517 7549 7580 7611	1,36 1,37 1,38 1,39 1,40 1,41 1,42 1,43 1,44 1,45	0869 0853 0838 0823 0808 0793 0778 0764 0749 0735	9131 9147 9162 9177 9192 9207 9222 9236 9251 9265 9279	2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21	0170 0166 0162 0158 0154 0150 0146 0143 0139	9830 9834 9838 9842 9846 9850 9854 9857 9861		2,87 2,88 2,89 2,90 2,91 2,92 2,93 2,94 2,95 2,96	0021 0020 0019 0019 0018 0018 0017 0016 0016	9979 9980 9981 9981 9982 9982 9983 9984 9984
0,61 0,62 0,63 0,64 0,65 0,66 0,67 0,68 0,69 0,70 0,71 0,72	2743 2709 2676 2643 2611 2578 2546 2514 2483 2451 2420 2389 2358	7257 7291 7324 7357 7389 7422 7454 7486 7517 7549 7580 7611 7642	1,36 1,37 1,38 1,39 1,40 1,41 1,42 1,43 1,44 1,45 1,46 1,47	0869 0853 0838 0823 0808 0793 0778 0764 0749 0735 0721 0708	9131 9147 9162 9177 9192 9207 9222 9236 9251 9265 9279 9292	2.12 2,13 2,14 2,15 2,16 2,17 2,18 2,19 2,20 2,21 2,22	0170 0166 0162 0158 0154 0150 0146 0143 0139 0136 0132	9830 9834 9838 9842 9846 9850 9854 9857 9861 9864 9868		2,87 2,88 2,89 2,90 2,91 2,92 2,93 2,94 2,95 2,96 2,97	0021 0020 0019 0019 0018 0018 0017 0016 0016 0015	9979 9980 9981 9981 9982 9982 9983 9984 9984 9985
0,61 0,62 0,63 0,64 0,65 0,66 0,67 0,68 0,69 0,70 0,71 0,72 0,73	2743 2709 2676 2643 2611 2578 2546 2514 2483 2451 2420 2389 2358 2327	7257 7291 7324 7357 7389 7422 7454 7486 7517 7549 7580 7611 7642 7673	1,36 1,37 1,38 1,39 1,40 1,41 1,42 1,43 1,44 1,45 1,46 1,47	0869 0853 0838 0823 0808 0793 0778 0764 0749 0735 0721 0708	9131 9147 9162 9177 9192 9207 9222 9236 9251 9265 9279 9292 9306	2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21 2.22 2.23	0170 0166 0162 0158 0154 0150 0146 0143 0139 0136 0132 0129	9830 9834 9838 9842 9846 9850 9854 9857 9861 9864 9868		2,87 2,88 2,89 2,90 2,91 2,92 2,93 2,94 2,95 2,96 2,97 2,98	0021 0020 0019 0019 0018 0018 0017 0016 0016 0015 0015	9979 9980 9981 9981 9982 9982 9983 9984 9984 9985 9985
0,61 0,62 0,63 0,64 0,65 0,66 0,67 0,68 0,69 0,70 0,71 0,72	2743 2709 2676 2643 2611 2578 2546 2514 2483 2451 2420 2389 2358	7257 7291 7324 7357 7389 7422 7454 7486 7517 7549 7580 7611 7642	1,36 1,37 1,38 1,39 1,40 1,41 1,42 1,43 1,44 1,45 1,46 1,47	0869 0853 0838 0823 0808 0793 0778 0764 0749 0735 0721 0708	9131 9147 9162 9177 9192 9207 9222 9236 9251 9265 9279 9292	2.12 2,13 2,14 2,15 2,16 2,17 2,18 2,19 2,20 2,21 2,22	0170 0166 0162 0158 0154 0150 0146 0143 0139 0136 0132	9830 9834 9838 9842 9846 9850 9854 9857 9861 9864 9868		2,87 2,88 2,89 2,90 2,91 2,92 2,93 2,94 2,95 2,96 2,97	0021 0020 0019 0019 0018 0018 0017 0016 0016 0015	9979 9980 9981 9981 9982 9982 9983 9984 9984 9985

Erwartungshorizont

	Erwartete Leistung		Zuordnung Bewertung		
		I	II	III	
a)	Die zuerst ankommende Person hat 31 Plätze zur Auswahl, die zweite 30, usw. und die letzte schließlich noch 3.				
	Das ergibt $31 \cdot 30 \cdot \cdot 3 = \frac{31!}{2!} \approx 4,11 \cdot 10^{33}$ Möglichkeiten.	2			
	Da man bei den freien Plätzen die Reihenfolge nicht berücksichtigen kann, gibt				
	$\operatorname{es} \binom{31}{2} = 465 \text{ M\"{o}glichkeiten f\"{u}r die freien Pl\"{a}tze.}$	2			

Thema: Stochastik

	Erwartete Leistung			
	ğ	I	II	III
b)	Es werden im Folgenden zwei mögliche Lösungswege angegeben:			
	1. Wir nehmen an, dass die Wahrscheinlichkeit, dass ein Tor in einer Zeitspanne			
	von einer Minute fällt, bei 3 Toren pro Spiel $\frac{1}{30}$ ist. Wenn man annimmt,			
	dass die Wahrscheinlichkeit für einen Torschuss in jeder der drei Minuten gleich bleibt und nicht mehr als ein Tor pro Minute fallen kann (darf), dann ist die Zufallsvariable X, die die möglichen Anzahlen der in einem Spiel fallenden Tore beschreibt, binomialverteilt mit den Parameter n = 3 und		2	
	$p = \frac{1}{30}.$			
	Dann gilt $P(X \ge 1) = 1 - P(X = 0) = 1 - \left(\frac{29}{30}\right)^3 \approx 1 - 0.9033 = 0.0967.$		1	
	Sicher ist die Wahrscheinlichkeit für einen Torschuss nicht in jeder Minute gleich, denn			
	- führende Mannschaften können schon einmal einen Gang herausnehmen;			
	- gegen Spielende kann die Kondition nachlassen;			
	- die Konzentration der Verteidigung kann nachlassen;			
	 eine Mannschaft kann sich schon mit einem Spielergebnis zufrieden gegeben haben; 			
	- oder eine Mannschaft kann unter dem Zeitdruck besonders offensiv spielen.			
	(*Hinweis zur Bewertung: Für jedes Argument, in dem kritisch auf den Modellcharakter eingegangen wird, sollte ein Punkt gegeben werden, höchstens jedoch drei Punkte.)			3*
	2. Ein Tor ist ein relativ seltenes Ereignis. Nimmt man an, dass in gleichlangen Spielzeitintervallen die Wahrscheinlichkeit für das Fallen eines Tores konstant ist, und dass auch in sehr kurz aufeinander folgenden Zeitintervallen Tore möglich sind, dann kann man die Zufallsvariable X, die die möglichen Anzahlen der in einem Spiel fallenden Tore beschreibt, als Poisson-verteilt			
	mit dem Parameter $\mu = 3 \cdot \frac{1}{30} = \frac{1}{10}$ ansehen.		(2)	
	Dann gilt $P_{0,1}(X \ge 1) = 1 - P_{0,1}(X = 0) = 1 - e^{-0.1} \approx 0,0952$.			
	Begründungen wie unter 1. Hier wäre auch ein Eingehen auf die möglichen Werte von X, also 0, 1, 2, denkbar. X ließe also auch eine über alle Grenzen wachsende Anzahl von Toren innerhalb von drei Minuten zu.		(1)	(3*)

	Erwartete Leistung		Zuordnung Bewertung		
	<u> </u>	I	II	III	
c)	• Es kennzeichne die Zufallsvariable Y die möglichen Anzahlen der 10 Personen, die tatsächlich an der Fahrt teilnehmen wollen. Y ist binomialverteilt mit den Parameters n = 101 und p = 0,89.	01 1			
	Wegen $np(1-p) = 101 \cdot 0.89 \cdot 0.11 = 9.8879 > 9$ (Laplace-Bedingung) man Y näherungsweise als normalverteilt ansehen. Es gilt) kann 1			
	$P(Y > 92) = 1 - P(Y \le 92) \approx 1 - \Phi\left(\frac{92,5 - 89,89}{\sqrt{9,8879}}\right) \approx 1 - \Phi(0,8300)$				
	$\approx 1 - 0.7967 \approx 20.3\%$	3			
	• Die Zufallsvariable Y ist jetzt binomialverteilt mit den Parametern n p = 0,89, wobei n so zu bestimmen ist, dass $P(Y \le 92) \ge 0,95$ gilt.	und			
	Da n mindestens 92 betragen muss, gilt die Laplace-Bedingung, den $n \cdot 0.89 \cdot 0.11 \ge 92 \cdot 0.89 \cdot 0.11 = 9.0068 > 9.$	1	1		
	Somit folgt $P(Y \le 92) \approx \Phi\left(\frac{92.5 - 0.89 \cdot n}{\sqrt{0.89 \cdot 0.11 \cdot n}}\right) \ge 0.95$ und damit				
	$\frac{92,5-0,89 \cdot n}{\sqrt{0,89 \cdot 0,11 \cdot n}} \ge 1,645.$		2		
	Mit der Substitution $x = \sqrt{n}$ und Rundungen auf vier Dezimalen folg	;t			
	$92,5-0,89x^2 \ge 0,5147x$, also $x^2 + 0,5783x - 103,9326 \le 0$.				
	Mit der quadratischen Ergänzung erhält man die Ungleichung				
	$(x+0.2892)^2 \le 103.9326 + 0.0836 = 104.0162$ und damit				
	$ x+0.2892 \le \sqrt{104.0162} \approx 10.1988$, also				
	$-10,1988 \le x + 0,2892 \le 10,1988$, woraus				
	$-10,488 \le \sqrt{n} \le 9,9096$ folgt.				
	Da \sqrt{n} nicht negativ ist, folgt $n \le 98,2$. Man darf also höchstens 98 Buchungen vornehmen, damit mit mindestens 95 %iger Wahrscheinl keine Beschwerden wegen der Überbuchungen kommen.	ichkeit	4		

Thema: Stochastik

	Erwartete Leistung		uordnu ewertu	_
			II	III
d)	Die Testvariable T beschreibt die möglichen Anzahlen von Absagen. Wenn man annimmt, dass alle Bucher unabhängig voneinander buchen, also z. B. keine Gruppen (Familien, Fanclubs,) geschlossen buchen bzw. geschlossen absagen, dann kann man T als binomialverteilt mit den Parametern n = 1000 und p annehmen.	1	1	
	Wenn man überprüfen will, ob die Absagerquote durch den Anzahlungszwang gesenkt wurde, muss man annehmen, dass die Regelung nichts oder das Gegenteil bewirkt hat. Die Nullhypothese lautet damit H_0 : $p \ge 0,11$.		1	
	Man wird die Hypothese ablehnen, wenn die Zahl der Absagen relativ klein ist, also in einem Intervall [0; c] liegt.	1		
	Wegen $1000 \cdot p \cdot (1 - p) \ge 1000 \cdot 0,11 \cdot 0,89 = 97,9 \ge 9$ ist T näherungsweise			
	normal verteilt mit $\mu = 110$ und $\sigma = \sqrt{97.9}$.	1		
	Aufgrund der Wahl des Signifikanzniveaus 5 % gilt			
	$P(T \le c) \le \Phi\left(\frac{c + 0.5 - 110}{\sqrt{1000 \cdot 0.11 \cdot 0.89}}\right) \le 0.05 \text{ und damit}$			
	$\Phi\left(\frac{110 - c - 0.5}{\sqrt{1000 \cdot 0.11 \cdot 0.89}}\right) \ge 0.95. \text{ Dem Tafelwerk entnimmt man}$			
	$\frac{110 - c - 0.5}{\sqrt{1000 \cdot 0.11 \cdot 0.89}} \ge 1.645 \text{ , woraus}$			
	$c \le 109,5 - 1,645 \cdot \sqrt{1000 \cdot 0,11 \cdot 0,89} \approx 93,224$, also $c \le 93$ folgt. Der		2	
	Ablehnungsbereich lautet [0; 93]. Wenn also unter 1000 Buchungen höchstens 93 Absagen auftreten, kann man von einem Erfolg der Maßnahme sprechen, da nur mit einer Wahrscheinlichkeit von höchstens 5 % so wenige Absagen vorkommen, wenn die Maßnahme nicht gegriffen hätte.		3	
		12	15	3

Aufgabe 6

Falschparker

Nach Angabe des Berliner Senates beträgt der Anteil der Falschparker (also Autos ohne Parkschein) gemäß einer Studie aus dem Frühjahr 15%. (Das Parkverhalten eines Einzelnen wird durch die Anderen nicht beeinflusst.)

- a) Zwei Berliner Politessen überprüfen zunächst den Parkplatz "Kudamm-Karree" mit genau 34 Autos, dann den Parkplatz "Kurfürstendamm" mit 48 Autos.
 - Berechnen Sie die Wahrscheinlichkeit dafür, dass die Politessen auf beiden Parkplätzen zusammen mindestens vier Falschparker aufschreiben.
 - Geben Sie an, mit wie vielen Falschparkern die Politessen auf beiden Parkplätzen zusammen rechnen können.

(4 P)

- b) Die Senatsverwaltung möchte eine Stichprobe von überprüften Autos untersuchen.
 - Bestimmen Sie für eine Stichprobe von 500 Autos den kleinstmöglichen, zum Erwartungswert symmetrischen Bereich, in dem die Zahl der Falschparker mit einer Wahrscheinlichkeit von mindestens 80% liegt.
 - Berechnen Sie, wie viele parkende Autos man überprüfen muss, um mit einer Wahrscheinlichkeit von über 99 % mindestens einen Falschparker zu erwischen.

(8 P)

Es gibt nicht überall und jederzeit Politessen. Deswegen kann man davon ausgehen, dass nur etwa 10% von allen Falschparkern durch Kontrollen von Politessen gefunden werden. Etwa die Hälfte davon kehrt nach wenigen Minuten zum Wagen zurück und trifft dort die Politessen noch an. Da sich Berlin als autofahrerfreundliche Stadt präsentieren will, hat der Senat zunächst beschlossen, dass diese Personen nur mündlich verwarnt werden, aber die normale Parkgebühr von 1 € pro Stunde nachbezahlen müssen. Die andere Hälfte muss ein Bußgeld von 15 € bezahlen.

Ein Senatsbeamter kommt in einem Aktenvermerk aufgrund der angegebenen Daten zu dem Schluss, dass die Stadt mit jedem Falschparker einen Verlust von 0,20 € macht. Er schlägt deswegen eine Erhöhung des Bußgeldes auf 19 € vor.

Auf Nachfrage erklärt der Beamte, er sei zu seinem Ergebnis wie folgt gekommen:

90 % der Falschparker werden nicht erwischt, jeder von diesen bringt 1 € Verlust. Von den restlichen 10 % bringt die Hälfte keinen Verlust und die andere Hälfte eigentlich ja nur 14 € Mehreinnahmen.

- Beurteilen Sie seine Rechnung.
- Untersuchen Sie den Vorschlag des Beamten auf Erhöhung des Bußgeldes.

(7 P)

- d) Der Senat entschloss sich letztendlich zu einer drastischen Erhöhung der Parkgebühren. Im Gegensatz zum Senat befürchten die Medien, dass (deswegen) der Anteil der Falschparker deutlich angestiegen sein könnte.
 - Leiten Sie ein Testverfahren für eine Kontrolle von 2400 Fahrzeugen her, mit dem man die Befürchtungen der Medien untersuchen kann. Geben Sie dazu Entscheidungsregeln bei einem Signifikanzniveau von 5 % an.

Eine unabhängige und verlässliche Studie nach der Gebührenerhebung im Sommer ergab, dass der Falschparkeranteil nunmehr bei mindestens 18 % liegt.

 Bestimmen Sie den kleinstmöglichen Bereich für die Wahrscheinlichkeit, dass sich der Senat trotzdem in seiner Ansicht bestätigt fühlt, wenn man obigen Test durchführt.

(11 P)

Thema: Stochastik

Gausssche Integralfunktion $\Phi(z) = \int\limits_{-\infty}^{z} \phi(x) \ dx$

z	Φ(-z)	Φ(z)	Z	Φ(-z)	Ф(z)	Z	Ф(-z)	Φ(z)] [Z	Φ(-z)	Φ(z)
0.01	0, 4960	0,	0.76	0,	0,	1.51	0,	0,		2.26	0,	0,
0,01	4960	5040 5080	0,76 0,77	2236 2206	7764 7794	1,51 1,52	0655 0643	9345 9357		2,26	0119 0116	9881 9884
0,02	4880	5120	0,78	2177	7823	1,53	0630	9370		2,28	0113	9887
0,03	4840	5160	0,79	2148	7852	1,54	0618	9382		2,29	0110	9890
0,05	4801	5199	0,80	2119	7881	1,55	0606	9394		2,30	0107	9893
0,05	4761	5239	0,81	2090	7910	1,56	0594	9406		2,31	0104	9896
0,00	4701	5239	0,81	2061	7939	1,57	0582	9408		2,31	0104	9898
0,07	4681	5319	0,83	2033	7967	1,58	0571	9429		2,33	0099	9901
0,09	4641	5359	0,84	2005	7995	1,59	0559	9441		2,34	0096	9904
0,10	4602	5398	0,85	1977	8023	1,60	0548	9452	1 1	2,35	0094	9906
0,11	4562	5438	0,86	1949	8051	1,61	0537	9463		2,36	0091	9909
0,11	4522	5478	0,87	1922	8078	1,62	0526	9474		2,37	0089	9911
0,12	4483	5517	0,88	1894	8106	1,63	0516	9484		2,38	0087	9913
0.14	4443	5557	0,89	1867	8133	1,64	0505	9495		2,39	0084	9916
0.15	4404	5596	0,90	1841	8159	1,65	0495	9505		2,40	0082	9918
0,16	4364	5636	0,91	1814	8186	1,66	0485	9515		2,41	0080	9920
0,10	4325	5675	0,92	1788	8212	1,67	0475	9525		2,42	0078	9922
0,18	4286	5714	0.93	1762	8238	1,68	0465	9535		2,43	0075	9925
0.19	4247	5753	0,94	1736	8264	1,69	0455	9545		2,44	0073	9927
0,20	4207	5793	0,95	1711	8289	1,70	0446	9554		2,45	0071	9929
0,21	4168	5832	0,96	1685	8315	1,71	0436	9564		2,46	0069	9931
0,22	4129	5871	0.97	1660	8340	1,72	0427	9573		2,47	0068	9932
0,23	4090	5910	0,98	1635	8365	1,73	0418	9582		2,48	0066	9934
0,24	4052	5948	0,99	1611	8389	1,74	0409	9591		2,49	0064	9936
0,25	4013	5987	1,00	1587	8413	1,75	0401	9599		2,50	0062	9938
0,26	3974	6026	1,01	1562	8438	1,76	0392	9608		2,51	0060	9940
0,27	3936	6064	1,02	1539	8461	1,77	0384	9616		2,52	0059	9941
0,28	3897	6103	1,03	1515	8485	1,78	0375	9625		2,53	0057	9943
0,29	3859	6141	1,04	1492	8508	1,79	0367	9633		2,54	0055	9945
0,30	3821	6179	1,05	1469	8531	1,80	0359	9641	1 1	2,55	0054	9946
0,31	3783	6217	1,06	1446	8554	1,81	0351	9649	l 1	2,56	0052	9948
0,32	3745	6255	1,07	1423	8577	1,82	0344	9656		2,57	0051	9949
0,33	3707	6293	1,08	1401	8599	1,83	0336	9664		2,58	0049	9951
0,34	3669	6331	1,09	1379	8621	1,84	0329	9671		2,59	0048	9952
0,35	3632	6368	1,10	1357	8643	1,85	0322	9678		2,60	0047	9953
0.36	3594	6406	1,11	1335	8665	1,86	0314	9686		2,61	0045	9955
0,37	3557	6443	1,12	1314	8686	1,87	0307	9693		2,62	0044	9956
0,38	3520	6480	1,13	1292	8708	1,88	0301	9699		2,63	0043	9957
0,39	3483	6517	1,14	1271	8729	1,89	0294	9706		2,64	0041	9959
0,40	3446	6554	1,15	1251	8749	1,90	0287	9713		2,65	0040	9960
0.41	3409	6591	1.16	1230	8770	1.91	0281	9719		2,66	0039	9961
0.42	3372	6628	1,17	1210	8790	1,92	0274	9726		2,67	0038	9962
0,43	3336	6664	1.18	1190	8810	1,93	0268	9732		2,68	0037	9963
0.44	3300	6700	1,19	1170	8830	1,94	0262	9738		2,69	0036	9964
0,45	3264	6736	1,20	1151	8849	1,95	0256	9744		2,70	0035	9965
0,46	3228	6772	1,21	1131	8869	1,96	0250	9750		2,71	0034	9966
0,47	3192	6808	1,22	1112	8888	-1,97	0244	9756		2,72	0033	9967
0,48	3156	6844	1,23	1093	8907	1,98	0239	9761	1 1	2,73	0032	9968
0,49	3121	6879	1.24	1075	8925	1,99	0233	9767		2.74	0031	9969
0,50	3085	6915	1,25	1056	8944	2,00	0228	9772		2,75	0030	9970
0,51	3050	6950	1,26	1038	8962	2,01	0222	9778		2,76	0029	9971
0,52	3015	6985	1,27	1020	8980	2,02	0217	9783		2,77	0028	9972
0,53	2981	7019	1,28	1003	8997	2,03	0212	9788		2,78	0027	9973
0,54	2946	7054	1,29	0985	9015	2,04	0207	9793	l 1	2,79	0026	9974
0,55	2912	7088	1,30	0968	9032	2,05	0202	9798		2,80	0026	9974
0,56	2877	7123	1,31	0951	9049	2,06	0197	9803	10.	2,81	0025	9975
0,57	2843	7157	1,32	0934	9066	2,07	0192	9808	1 "	2,82	0024	9976
0,58	2810	7190	1,33	0918	9082	2,08	0188	9812		2,83	0023	9977
0,59	2776	7224	1,34	0901	9099	2,09	0183	9817	-	2,84	0023	9977
0,60	2743	7257	1,35	0885	9115	2,10	0179	9821		2,85	0022	9978
0,61	2709	7291	1,36	0869	9131	2,11	0174	9826		2,86	0021	9979
0,62	2676	7324	1,37	0853	9147	2,12	0170	9830		2,87	0021	9979
0,63	2643	7357	1,38	0838	9162	2,13	0166	9834		2,88	0020	9980
0,64	2611	7389	1,39	0823	9177	2,14	0162	9838		2,89	0019	9981
0,65	2578	7422	1,40	0808	9192	2,15	0158	9842		2,90	0019	9981
0,66	2546	7454	1,41	0793	9207	2,16	0154	9846		2,91	0018	9982
0,67	2514	7486	1,42	0778	9222	2,17	0150	9850		2,92	0018	9982
0,68	2483	7517	1,43	0764	9236	2,18	0146	9854		2,93	0017	9983
0,69	2451	7549	1,44	0749	9251	2,19	0143	9857		2,94	0016	9984
0,70	2420	7580	1,45	0735	9265	2,20	0139	9861		2,95	0016	9984
0,71	2389	7611	1,46	0721	9279	2,21	0136	9864		2,96	0015	9985
	2358	7642	1,47	0708	9292	2,22	0132	9868		2,97	0015	9985
0.72							0129	9871	1 1			9986
0,72 0,73	2327	7673	1.48	0694	9306	2,23	0129	9071		2,98	0014	3300
0,72 0,73 0,74	2327 2296	7673 7704	1,48 1,49	0694	9306	2,23 2,24 2,25	0129	9875		2,98	0014	9986

	Erwartete Leistung	Zuordnung Bewertung			
				III	
a)	X beschreibt die Anzahl der Falschparker. X ist binomialverteilt mit n = 82 und p = 0,15; also $B_{82;0,15}$ -verteilt. $P(X \ge 4) = 1 - P(X \le 3) = 1 - P(X = 0) - P(X = 1) - P(X = 2) - P(X = 3)$ ≈ 1 − 0,0000016 − 0,000024 − 0,000169 − 0,000794 ≈ 0,999011 (0,999013 bei nicht gerundeten Zwischenwerten).				
	Die Wahrscheinlichkeit beträgt also ca. 99,9 %. Es ist E(X) = n p = 82 · 0,15 = 12,3 . Die Politessen müssen daher mit ca. 12 Falschparkern rechnen.	3			
b)	X beschreibt die Anzahl der ertappten Falschparker bei n überprüften Autos; X ist $B_{n;0,15}$ - verteilt.				
	Kleinstmöglicher Bereich symmetrisch zum Erwartungswert:				
	$n = 500 \text{ und } p = 0.15 \Rightarrow \mu = 75 \text{ und } \sigma = \sqrt{500 \cdot 0.15 \cdot 0.85}$				
	$\sigma = \sqrt{500 \cdot 0.15 \cdot 0.85} \approx 7.984$	1			
	Es gilt $P(\mu-d \le X \le \mu+d) \ge 0.8 \implies P(\mu-d \le X \le \mu+d) \approx \Phi(\frac{d}{\sigma}) - \Phi(-\frac{d}{\sigma}) \ge 0.8$				
	$\Rightarrow 2\Phi(\frac{d}{\sigma}) - 1 \ge 0.8 \iff \Phi(\frac{d}{\sigma}) \ge 0.9$		2		
	Aus der Tabelle für die Gaußsche Summenfunktion entnimmt man $\frac{d}{d} \ge 1,28$. Damit		1		
	gilt $d \ge 10,22$, also muss $d = 11$ sein. Damit ist das gesuchte Intervall [64 ; 86].		1		
	<u>Umfang der Stichprobe</u>				
	Wenn n der Umfang der Stichprobe ist, so gilt $P(X \ge 1) > 0.99 \Leftrightarrow 1 - P(X = 0) > 0.99 \Leftrightarrow$		1		
	$P(X=0) < 0.01 \Leftrightarrow \binom{n}{0} 0.15^{0} 0.85^{n} < 0.01 \Leftrightarrow 0.85^{n} < 0.01 \Leftrightarrow n \ln(0.85) < \ln(0.01) \Leftrightarrow 0.01 \Leftrightarrow $				
	$n>\frac{ln(0,01)}{ln(0,85)} \ (\ da\ ln(0,85)\ negativ\ ist).\ Daher\ ist\ also\ n>28,34,\ d.h.\ n\geq 29.$				
	Es müssen also mindestens 29 parkende Autos kontrolliert werden.		2		

	Erwartete Leistung						uordnu ewertu	
						I	II	III
c)	Es ist G die "E Nichtfalschpar Falschparker z ein Bußgeld vo	Der Beamte hat den Verlust von 0,20 Euro pro Falschparker richtig erklärt: Es ist G die "Einnahme" durch Falschparker pro Stunde im Vergleich zu einem Nichtfalschparker. Ein nicht ertappter Falschparker bringt 1 €Verlust. Der verwarnte Falschparker zahlt nach, bringt also weder Gewinn noch Verlust. Ein Falschparker, der ein Bußgeld von 15 €zahlt, bringt 14 €Gewinn, denn 1 €hätte er ja sonst (als Nichtfalschparker) gebracht.						
		Falschparker nicht ertappt	Nur verwarnt	Mit Bußgeld				
	g _i (in €)	-1	0	14				
	P(G=g _i)	0,90	0,05	0,05				
	Der Erwartungswert E(G) ist dann E(G) = 0,9 ·(-1) + 0,05 ·0 + 0,05 ·14 = -0,20, d h. pro Falschparker macht die Stadt im Durchschnitt einen Verlust von 0,20 € Man müsste also eine Erhöhung des Bußgeldes beschließen, damit zumindest die Stadt keinen Verlust macht.						2	
	Ist B das erhöhte Bußgeld, so gilt für die Situation "Kein Verlust": Erwartungswert E(G) = $0.9 \cdot (-1) + 0.05 \cdot 0 + 0.05 \cdot B = 0 \Leftrightarrow 0.05 \cdot B = 0.9 \Leftrightarrow B = 18$						2	
	Damit kein Verlust entsteht, müsste das Bußgeld mindestens auf 18 €erhöht werden.							
		des Beamten lässt alsom Durchschnitt).	o sogar einen Gewinn	erwarten (hier 0,05€ _I	pro		1	

	Erwartete Leistung			ng ng
	Wonn man die Redenken der Medien testen will, wird men als zu testende Nullhyme			
d)	Wenn man die Bedenken der Medien testen will, wird man als zu testende Nullhypothese das Gegenteil von dem annehmen, was die Medien aufgrund dieser Maßnahme befürchten, damit man diese Annahme ggf. mit einer Irrtumswahrscheinlichkeit von 5% verwerfen kann. H_0 sei die Hypothese, dass die Maßnahme ohne Folgen für die Falschparkerquote ist, der Prozentsatz also gleichgeblieben ist. H_0 : $p=0,15$. Die Gegenhypothese lautet dann H_1 : $p>0,15$.	1		
	Die Zufallsvariable X beschreibe die möglichen Anzahlen von Falschparkern bei der Stichprobe mit $n=2400$. Man wird die Nullhypothese ablehnen, wenn man relativ viele Falschparker bei der Stichprobe findet, also liegt hier ein rechtsseitiger Signifikanztest vor. Also ist unter der Annahme " H_0 ist wahr" die kleinste ganzzahlige Grenze g gesucht mit $P(X \ge g) \le 0.05$ (g gehört also schon zum Ablehnungsbereich). X ist binomialverteilt mit den Parametern $n=2400$ und $p=0.15$. Es kann hier die Näherung von Moivre-Laplace verwendet werden, da	1		
	$n \cdot p \cdot (1-p) = 2400 \cdot 0.15 \cdot 0.85 = 306 > 9$ ist. Es gilt $P(X \ge g) \le 0.05 \iff P(X \le g - 1) \ge 0.95$. Mit der Näherung folgt	1		
	$\Phi\left(\frac{g-1+0.5-2400\cdot0.15}{\sqrt{306}}\right) \geq 0.95 \text{ . Somit ist mittels der Tabelle der Normalverteilung}$ und der Monotonie der Φ-Funktion $\frac{g-360.5}{\sqrt{306}} \geq 1.645 \text{ . Folglich ist } g \geq 389.28 \text{ und}$ daher $g=390$ (Ohne Korrekturglied 0,5 ergibt sich $g\geq389.78$, also ebenfalls $g=390$). Damit ist der Ablehnungsbereich der Nullhypothese $K=[390;2400]$. Wir haben daher folgende Entscheidungsregel: Werden 390 oder mehr Falschparker erwischt, so verwerfen wir die Nullhypothese, d h. wir werden die Befürchtungen der Medien teilen. Werden höchstens 389 Falschparker ertappt, so bleiben wir bei der Nullhypothese, d h. wir entscheiden uns gegen die Befürchtungen der Medien und unterstützen die Meinung des Senats. Wenn H_0 nicht verworfen wird, obwohl H_0 falsch ist (hier $p\geq0.18$), begeht man einen	1	2	
	Fehler zweiter Art. Dieser tritt genau dann ein, wenn man im Annahmebereich der Nullhypothese landet, d h. im Intervall $\overline{K} = [0~; 389]$. Je größer der Parameter p wird, desto kleiner wird die Wahrscheinlichkeit, dass der Test ein Ergebnis aus \overline{K} liefert. Im Extremfall $p=1$ wäre die Wahrscheinlichkeit dann Null. Die Wahrscheinlichkeit nimmt den größten Wert an, wenn p kleinstmöglich ist, also $p=0.18$. In diesem Fall gilt mit der Näherungsformel (da $n \cdot p \cdot (1-p) = 2400 \cdot 0.18 \cdot 0.82 = 354.24 > 9$ ist) $P(X \le 389) \approx \Phi\left(\frac{389 + 0.5 - 2400 \cdot 0.18}{\sqrt{354.24}}\right) = \Phi\left(\frac{-42.5}{\sqrt{354.24}}\right) \approx 1 - \Phi(2.26) \approx 1 - 0.9881,$ somit ist $P(X \le 389) \approx 0.012$ (ohne Korrekturglied $1 - \Phi(2.29) \approx 1 - 0.9890 = 0.011$). Das kleinstmögliche Intervall, welches die Wahrscheinlichkeiten umfasst, mit denen wir dem Senat nach dem Test zustimmen, obwohl H_0 falsch ist, ist $[0\% \ ; 1.2\%]$.			3
		12	15	3

Aufgabe 1

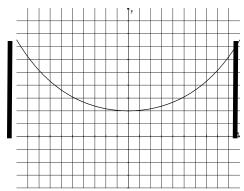
Bei vielen technischen Problemen treten Kombinationen von Exponentialfunktionen auf. Zwei von ihnen, die besondere Namen tragen, sollen hier näher betrachtet werden.

Sinus hyperbolicus: $g(x) = \sinh(x) := \frac{e^x - e^{-x}}{2}$

Cosinus hyperbolicus: $f(x) = \cosh(x) := \frac{e^x + e^{-x}}{2}$

a) Untersuchen Sie die Funktionen sinh und cosh auf Nullstellen, Symmetrien und ihr Verhalten für $x \to \infty$. Zeichnen Sie die Graphen dieser beiden Funktionen in ein gemeinsames Koordinatensystem ein $(-3 \le x \le 3)$.

Zeigen Sie folgende Beziehungen:


- $\cosh^2(x) \sinh^2(x) = 1$
- g'(x) = f(x) und f'(x) = g(x)
- $\cosh(x) > \sinh(x)$ für alle $x \in IR$

(14 P)

b) Berechnen Sie die Fläche zwischen den Graphen der beiden Funktionen f und g im 1. Quadranten.

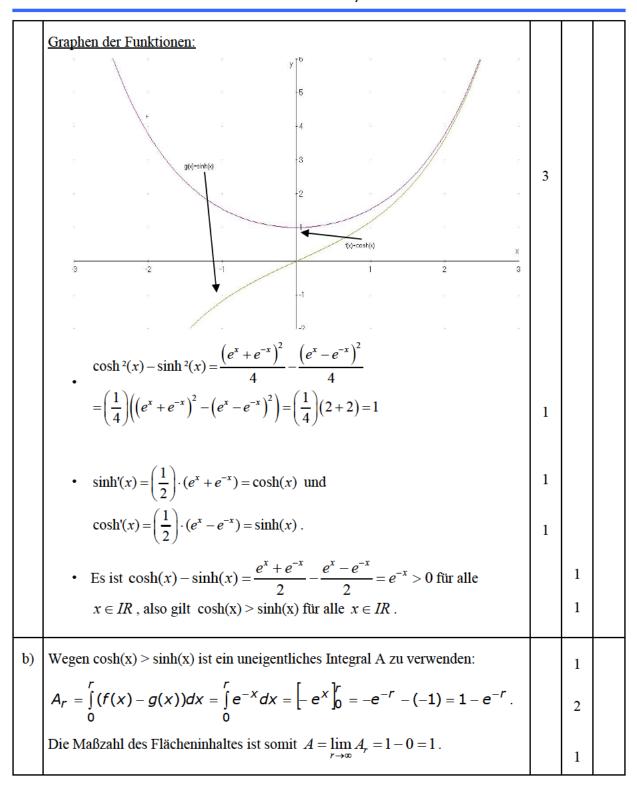
(4 P)

Spannt man ein Seil (oder eine Kette) zwischen zwei gleich hohen Türmen auf, so folgt seine Linie der so genannten Kettenlinie $k(x) = a \cdot \cosh(b \cdot x)$ mit a, b > 0.

- c) Begründen Sie, dass *a* dabei die Höhe des tiefsten Seilpunktes über der Grundebene ist.
 - Erläutern Sie, wie sich die Kettenlinie ändert, wenn sich bei festgehaltenem a der Parameter b vergrößert.

(3 P)

- d) Ein Seil wird zwischen zwei jeweils 117,8 m hohen Türmen gespannt. Die Türme sind 150 m voneinander entfernt. Das Seil hat in der Mitte einen Bodenabstand von 80m.
 - Leiten Sie die Gleichung für dieses Seil her.
 (k(x) ≈ 80 · cosh(0,0125 · x))
 - Berechnen Sie den Winkel zwischen Seil und Turm am Befestigungspunkt des Seils.
 - Erläutern Sie, wie sich die Parameter a und b sowie der eben berechnete Winkel ändern, wenn man das Seil straffer spannt.


(6 P)

e) Für eine im Intervall [c; d] stetig differenzierbare Funktion h berechnet sich die Bogenlänge I des Graphen von h über [c; d]

durch
$$I = \int_{C}^{C} \sqrt{1 + (h'(x))^2} dx$$
.

Zeigen Sie, dass für die Bogenlänge des Graphen der Funktion
$$f(x) = \cosh(x)$$
 im Intervall [c;d] gilt: $I = \sinh(d) - \sinh(c)$. (3 P)

	Frwartoto Schülorloistung	Bewertung				
	Erwartete Schülerleistung	I	II	III		
a)	Sinus hyperbolicus:					
	Nullstellen:					
	$\left \frac{1}{2} \left(e^{x_0} - e^{-x_0} \right) = 0 \iff e^{x_0} = e^{-x_0} \iff e^{2x_0} = 1 \text{ . Also gilt } x_0 = 0.$	1				
	Symmetrie:					
	Ich untersuche die Beziehung $sinh(-x) = -sinh(x)$					
	$\sinh(-x) = \frac{1}{2} \cdot (e^{-x} - e^{x}) = -\frac{1}{2} \cdot (e^{x} - e^{-x}) = -\sinh(x).$					
	Also ist der Graph des Sinus hyperbolicus punktsymmetrisch zum Ursprung.	1				
	Verhalten für $x \to \infty$:					
	Mit $x \to \infty$ geht $e^{-x} \to 0$, und damit gilt $\sinh(x) \to \infty$ für $x \to \infty$.	1				
	Cosinus hyperbolicus:					
	Nullstellen:					
	Es gibt keine Nullstellen, da der Term des Zählers als Summe zweier positiver Zahlen immer positiv ist.	1				
	Symmetrie:					
	Ich untersuche die Beziehung $cosh(-x) = cosh(x)$					
	$ \cosh(-x) = \frac{1}{2} \cdot (e^{-x} + e^{x}) = \cosh(x). $					
	Also ist der Graph des Cosinus hyperbolicus symmetrisch zur y-Achse.	1				
	Verhalten für $x \to \infty$:					
	Mit $x \to \infty$ geht $e^{-x} \to 0$, und damit gilt $\cosh(x) \to \infty$ für $x \to \infty$.	1				

c)	Mit der Beachtung der Symmetrie der Kettenlinie und der Tatsache, dass das Seil in der Mitte am tiefsten hängt, gilt			
	$k(0) = a \cdot \cosh(b \cdot 0) = a \cdot 0, 5 \cdot (2e^{0}) = a \cdot 0, 5 \cdot 2 = a$.		1	
	Dies ist das gewünschte Resultat.		1	
	Wenn bei festgehaltenem a der Parameter b vergrößert wird, so ändert sich bei $x=0$ nichts. Der Tiefpunkt der Funktion bleibt also erhalten. Für größere x -Werte vergrößert sich der Betrag der Argumente in der Exponentialfunktion.			
	Da e^x im Wesentlichen den Funktionswert bestimmt, weil e^{-x} für große x-Werte sehr klein ist, wird auch der Funktionswert größer:		2	
	Der Graph wird bei gleichem Minimum nach beiden Seiten steiler.			
d)	• Es ist $a = 80$ und $k(75) = 117,8$.			
	117,8 = $80 \cdot \frac{1}{2} \cdot \left(e^{75 \cdot b} + e^{-75 \cdot b} \right) \left e^{75 \cdot b} \right $			
	$117.8 \cdot e^{75 \cdot b} = 40 \cdot e^{2.75b} + 40 :40$			
	$0 = e^{2.75b} - 2,945 \cdot e^{75b} + 1 \qquad \qquad u := e^{75b}$			
	$0 = u^2 - 2,945u + 1$			
	$\mathbf{u}_{1,2} = 1,4725 \pm \sqrt{1,4725^2 - 1}$			
	u_2 ist keine Lösung, da $ln(u_2)<0$ ist und b positiv sein soll.			
	Also gilt $b = \frac{\ln(u_1)}{75} \approx 0.0125$ \Rightarrow $k(x) = 80 \cdot \cosh(0.0125 \cdot x)$		3	
	• Der Winkel ergibt sich aus der Steigung der Kettenlinie an der Stelle $x = 75$:			
	$k'(75) = 80 \cdot \sinh(0.0125 \cdot 75) \cdot 0.0125 \approx 1.08099$.			
	Damit ergibt sich das Winkelmaß zu $\alpha = 90^{\circ} - \arctan(k'(75)) \approx 42,77^{\circ}$.		2	
	• Wird das Seil straffer gespannt, hängt es in der Mitte höher. Also wächst der Parameter <i>a</i> .			
	Da dann der Höhenunterschied zwischen Mitte und Türmen abnimmt, muss			
	(mit dem Ergebnis von c) der Parameter <i>b</i> abnehmen. Da das Seil "waagerechter" in den Aufhängungspunkten ankommt, wird der			
	Winkel größer, bleibt aber unter 90°.		1	
e)	$I = \int_{c}^{d} \sqrt{1 + (h'(x))^{2}} dx = \int_{c}^{d} \sqrt{1 + (\cosh'(x))^{2}} dx = \int_{c}^{d} \sqrt{1 + (\sinh(x)^{2}} dx \text{ (nach a)}$			
	$= \int_{c}^{d} \sqrt{\left(\cosh(x)\right)^{2}} dx = \int_{c}^{d} \cosh(x) dx = \left[\sinh(x)\right]_{c}^{d} = \sinh(d) - \sinh(c).$			3
		12	15	3

(18 P)

Leistungskurs Mathematik Thema: Analysis

Aufgabe 2

Gegeben ist die Funktionenschar f_t mit $f_t(x) = (t - e^x)^2$; $t \in IR$.

- a) Untersuchen Sie die Graphen der Funktionenschar f_t auf Schnittpunkte mit der x-Achse, Extrem- und Wendepunkte sowie auf das Verhalten für $x \to \infty$ und für $x \to -\infty$. Skizzieren Sie die Graphen der Funktionen f_1 und f_2 . Beschreiben Sie, wie sich die Graphen der Funktionenschar f_t ändern, wenn t die reellen Zahlen durchläuft.
- b) Untersuchen Sie, welche Beziehungen zwischen zwei Parametern t_1 und t_2 bestehen müssen, damit die Graphen der beiden Funktionen f_{t_1} und f_{t_2} einen Schnittpunkt besitzen. Geben Sie seine Koordinaten an. (5 P)
- c) Berechnen Sie den Inhalt der Fläche, die von den Graphen der Funktionen f_1 und f_2 sowie der x-Achse eingeschlossen wird. (4 P)
- d) Für t > 0 begrenzen die Graphen der Funktionen f_t und g_t mit $g_t(x) = t^2$ und die Gerade mit der Gleichung x = u mit u < 0 eine Fläche. Berechnen Sie das Volumen des Drehkörpers, der entsteht, wenn diese Fläche um den Graphen von g_t rotiert. (3 P)

	Erwartete Leistung B			
		I	П	Ш
a)	Schnittpunkte mit der x- Achse: $f_t(x_N) = 0 \Leftrightarrow (t - e^{x_N})^2 = 0 \Leftrightarrow t = e^{x_N} \Leftrightarrow x_N = \ln(t)$ Die Lösung existiert nur für $t > 0$. Der Schnittpunkt ist N(ln (t)/0) für $t > 0$.			
	Extrempunkte: Ableitungen: $f'_{t}(x) = 2 \cdot (t - e^{x}) \cdot (-e^{x}) = 2 e^{2x} - 2te^{x}$ $f''_{t}(x) = 2 \cdot 2 \cdot e^{2x} - 2te^{x} = 4 e^{2x} - 2te^{x}$ $f''_{t}(x) = 4 \cdot 2 \cdot e^{2x} - 2te^{x} = 8e^{2x} - 2te^{x}$ Wenn x_{e} eine Extremstelle ist, dann gilt $f'(x_{e}) = 0$. Daher ist zunächst die Gleichung $f'_{t}(x) = 0$ zu untersuchen. $f'_{t}(x) = 2e^{2x} - 2te^{x} = e^{x} \cdot (2e^{x} - 2t) = 0$ $\Leftrightarrow 2e^{x} - 2t = 0 \Leftrightarrow e^{x} = t \Leftrightarrow x = \ln(t) \text{ für } t > 0.$	2		
	Wenn $f'(x) = 0$ und $- f_t''(x_e) > 0$, dann ist x_e Minimalstelle von f_t . $- f_t''(x_e) < 0$, dann ist x_e Maximalstelle von f_t . $f_t''(\ln(t)) = 4e^{2\ln(t)} - 2te^{\ln(t)} = 4(e^{\ln(t)})^2 - 2te^{\ln(t)} = 4 \cdot t^2 - 2 \cdot t^2 = 2t^2 > 0$ Also für $t > 0$ ist $T(\ln(t)/0)$ Tiefpunkt von f_t . Für $t \le 0$ existiert kein Extrempunkt.	3		
	Wendepunkte: Wenn x_w eine Wendestelle ist, dann gilt $f''(x_w) = 0$. $f_t''(x_w) = 4e^{2x_w} - 2te^{x_w} = 2 \cdot e^{x_w} (2e^{x_w} - t) = 0$ $\Leftrightarrow 2 \cdot e^{x_w} - t = 0 \Leftrightarrow e^{x_w} = \frac{1}{2}t \Leftrightarrow x_w = \ln(\frac{t}{2})$ für $t > 0$.			
	Wenn $f_t''(x_w) = 0$ und $f_t'''(x_w) \neq 0$, dann ist x_w Wendestelle von f_t . $f'''(\ln(\frac{t}{2})) = 8e^{\frac{2 \cdot \ln(\frac{t}{2})}{2}} - 2te^{\frac{\ln(\frac{t}{2})}{2}} = 8 \cdot (e^{\frac{\ln(\frac{t}{2})}{2}})^2 - 2te^{\frac{\ln(\frac{t}{2})}{2}} = t^2 \neq 0,$			
	$f(\ln(\frac{t}{2})) = (t - e^{\ln(\frac{t}{2})})^2 = \left(\frac{t}{2}\right)^2$			
	Also für $t > 0$ ist $W\left(\ln(\frac{t}{2}) / \left(\frac{t}{2}\right)^2\right)$ Wendepunkt von f_t . Für $t \le 0$ existiert kein Wendepunkt.	3		

	Вє	ewertu						
Verhalten für große bzw. kleine x-Werte: Für $x \to \infty$ gilt: $f_t(x) = (t - e^x)^2 = (t^2 - 2te^x + (e^x)^2) \to \infty$, da e^{2x} stärker als e^x gegen Unendlich strebt. $\lim_{x \to -\infty} f_t(x) = \lim_{x \to -\infty} (t - e^x)^2 = \lim_{x \to -\infty} (t^2 - 2te^x + (e^x)^2) = t^2$, weil e^x mit								
$x \to -\infty$ gegen Null strebt.		3						
$\mathbf{f2}(x) = (2 - \mathbf{e}^x)^2$	3							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\mathbf{f1}(x) = \left(1 - \mathbf{e}^{x}\right)^{2} \qquad 0.5$								
·								

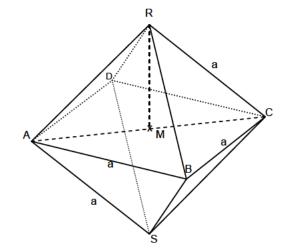
b)	Seien $t_1, t_2 \in IR \text{ mit } t_1 \neq t_2$		
	$\Leftrightarrow \qquad \qquad f_{t_1}(x_s) = f_{t_2}(x_s)$		
	\Leftrightarrow $(t_1 - e^{x_s})^2 = (t_2 - e^{x_s})^2$		
	$\Leftrightarrow t_1^2 - 2t_1 e^{x_s} + (e^{x_s})^2 = t_2^2 - 2t_2 e^{x_s} + (e^{x_s})^2$	1	
	$\Leftrightarrow t_1^2 - t_2^2 = -2t_2 e^{x_s} + 2t_1 e^{x_s}$		
	$\Leftrightarrow \qquad e^{x_s} = \frac{t_1^2 - t_2^2}{-2t_2 + 2t_1} = \frac{(t_1 - t_2) \cdot (t_1 + t_2)}{2(t_1 - t_2)}$	1	
	$\Leftrightarrow \qquad x_s = \ln(\frac{t_1 + t_2}{2})$	1	
	Die Lösung existiert nur für t ₁ + t ₂ > 0.	1	
	$f_{t_1}\left(\ln(\frac{t_1+t_2}{2})\right) = \left(t_1 - e^{\ln(\frac{t_1+t_2}{2})}\right)^2 = \left(\frac{2t_1-t_1-t_2}{2}\right)^2 = \left(\frac{t_1-t_2}{2}\right)^2$		
	Also für $t_1 + t_2 > 0$ ist $S\left(\ln(\frac{t_1 + t_2}{2}) / \left(\frac{t_1 - t_2}{2}\right)^2\right)$ Schnittpunkt der		
	Graphen der Funktionen f_{t_1} und f_{t_2} .	1	
c)	Bestimmung der Integrationsgrenzen:		
	$x_1 = x_{N_1} = ln(1) = 0$ mit Teilaufgabe a)		
	$x_2 = x_{s_{1,2}} = \ln(\frac{1+2}{2}) = \ln(1,5)$ mit Teilaufgabe b) oder mit einfacher		
	neuer Berechnung.		
	$x_3 = x_{N_2} = \ln(2)$ mit Teilaufgabe a)	1	
		1	
	$A = \int_{0}^{\ln(1,5)} f_1(x)dx + \int_{\ln(1,5)}^{\ln(2)} f_2(x)dx = \int_{0}^{\ln(1,5)} (1 - e^x)^2 dx + \int_{\ln(1,5)}^{\ln(2)} (2 - e^x)^2 dx$	1	
	$= \int_{0}^{\ln(1,5)} (1 - 2e^x + e^{2x}) dx + \int_{\ln(1,5)}^{\ln(2)} (4 - 4e^x + e^{2x}) dx$		
	$= \left[x - 2e^x + \frac{1}{2}e^{2x}\right]_0^{\ln(1,5)} + \left[4x - 4e^x + \frac{1}{2}e^{2x}\right]_{\ln(1,5)}^{\ln(2)}$		
	≈ 0,0304651 + 0,0257283 = 0,0561934	2	

	$= \pi \left(8t^4 - \frac{32}{3}t^4 + 4t^4 - \left(2t^2e^{2u} - \frac{4}{3}te^{3u} + \frac{1}{4}e^{4u} \right) \right)$ $= \pi \left(\frac{4}{3}t^4 - 2t^2e^{2u} + \frac{4}{3}te^{3u} - \frac{1}{4}e^{4u} \right)$			3
	$= \pi \int_{u}^{\ln(2t)} (4t^{2}e^{2x} - 4te^{3x} + e^{4x}) dx = \pi \left[2t^{2}e^{2x} - \frac{4}{3}te^{3x} + \frac{1}{4}e^{4x} \right]_{u}^{\ln(2t)}$			
	$V(u) = \pi \int_{x_1}^{x_2} (h_t(x))^2 dx$ $= \pi \int_{x_1}^{\ln(2t)} (-2te^x + e^{2x})^2 dx$			
d)	Der Graph von f_t wird so längs der y-Achse nach unten um t^2 verschoben, dass die Drehachse mit der x-Achse zusammenfäl dazu gehörende Funktion ist h_t mit $h_t(x) = f_t(x) - g_t(x) = (t - e^x)^2 - t^2 = -2te^x + e^{2x}$. Die Integrationsgrenzen sind $x_1 = u$ und $x_2 = \ln(2t)$. Es folgt:	lt. Die		

Aufgabe 3

In einem kartesischen Koordinatensystem sind folgende Punkte gegeben:

$$A(2|0|4), B(-2|5|1)$$
 und $C(2|10|4)$.


a) Zeigen Sie, dass die Punkte A, B und C durch einen vierten Punkt D zu einem Quadrat ergänzt werden können. Geben Sie die Ebene E1, in der die vier Punkte liegen, in Koordinatenform an. (Zur Kontrolle: $E_1: 3x_1 - 4x_3 + 10 = 0$.)

(7 P)

 b) Auf dem Quadrat ABCD lässt sich ein reguläres (regelmäßiges) Oktaeder ABCDRS aufbauen (siehe Abbildung). Regulär bedeutet, dass alle Kanten gleich lang sind.

Berechnen Sie den Abstand der Punkte *R* und *S*.

Bestimmen Sie die Koordinaten dieser beiden Punkte.

(6 P)

- c) Als regulärer Körper besitzt das Oktaeder eine so genannte Inkugel K_I , also eine einbeschriebene Kugel, die alle Seitenflächen berührt.
 - Bestimmen Sie den Punkt P, in dem die Inkugel K_I die Seitenfläche BRC berührt.

(Sollten Sie in b) den Punkt R nicht errechnet haben, verwenden Sie R(5|5|0).)

- Geben Sie die Kugelgleichung von K_I an. (8 P)
- d) Gegeben ist jetzt noch die Ebenenschar F_t mit

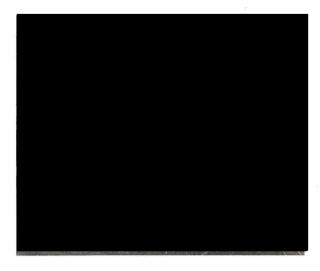
$$F_t$$
: $tx_1 + (7t - 1) x_3 + (4 - 30t) = 0$

 Zeigen Sie, dass jede Ebene dieser Ebenenschar die Gerade g_{AC} durch A und C enthält.

Für bestimmte Parameter t schneiden die Ebenen F_t die Kante BR in Punkten T_t sowie die Kante \overline{SD} in U_t . Damit bildet jede Ebene F_t mit dem Oktaeder eine Schnittfigur AT_tCU_t .

- Zeichnen Sie eine solche Schnittfigur in die obige Graphik ein und beschreiben Sie diese Schnittfiguren.
- Untersuchen Sie, für welchen Wert von t die zugehörige Schnittfigur den kleinsten Flächeninhalt aufweist und geben Sie T_t und den Flächeninhalt an.

(9 P)


	Erwartete Schülerleistung		ordnu wertu					
		I	II	Ш				
a)	Zur Ergänzung zum Quadrat: Zu zeigen ist: $\left \overrightarrow{AB} \right = \left \overrightarrow{BC} \right $ und $\overrightarrow{AB} \perp \overrightarrow{BC}$.	1						
	Es gilt: $\overrightarrow{AB} = \begin{pmatrix} -4 \\ 5 \\ -3 \end{pmatrix}$, $\overrightarrow{BC} = \begin{pmatrix} 4 \\ 5 \\ 3 \end{pmatrix}$ und $\overrightarrow{AB} \cdot \overrightarrow{BC} = 0$, also $\overrightarrow{AB} \perp \overrightarrow{BC}$. Weiter							
	folgt: $ \overrightarrow{AB} = \sqrt{(-4)^2 + 5^2 + (-3)^2} = \sqrt{50} = \sqrt{4^2 + 5^2 + 3^2} = \overrightarrow{BC} $.	1						
	Beide Bedingungen sichern die Möglichkeit der Ergänzung zum Quadrat.							
	Der Punkt D errechnet sich dann aus $\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{BC}$ zu $D(6 5 7)$.							
	Zur Bestimmung der Ebenengleichung:							
	Ein Normalenvektor ergibt sich z. B. aus dem Vektorprodukt zweier Spannvektoren, etwa \overrightarrow{BA} und \overrightarrow{BC} , und anschließendem Einsetzen des Ortsvektors von B .							
	$\overrightarrow{n_E} = \overrightarrow{AB} \times \overrightarrow{BC} = 10 \cdot \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}, B \in E_1 \Rightarrow E_1 : 3x_1 - 4x_3 + 10 = 0.$	2						
b)	Da das Oktaeder regulär ist, ist das Dreieck MCR rechtwinklig und		1					
	$\left \overrightarrow{MR} \right = \sqrt{a^2 - \left(\frac{1}{2}a\sqrt{2}\right)^2} = \frac{1}{2}a\sqrt{2}$. Damit folgt für den gesuchten		1					
	Abstand $ \overrightarrow{RS} = \overrightarrow{AC} = 10$. Der Mittelpunkt des Quadrats liegt bei $M(2 5 4)$; mit dem Einheits-							
	normalenvektor $\overrightarrow{n_0} = \frac{1}{5} \cdot \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$ und dem bekannten Abstand von 5 der		1					
	beiden Punkte zur Ebene E_1 ergeben sich $R(5 5 0)$ und $S(-1 5 8)$ oder $R(-1 5 8)$ und $S(5 5 0)$.							

c)	Regularität hat zur Folge, dass alle Seitenflächen des Oktaeders gleichseitige Dreiecke sind sowie dass der Mittelpunkt der Inkugel in M liegt. Die Pyramide aus je einer Seitenfläche und der Spitze M basiert also auf einem gleichseitigen Dreieck; da die Inkugel die Seitenfläche genau im Fußpunkt der Raumhöhe dieser Pyramide berührt, ist der Berührpunkt der Schwerpunkt P des gleichseitigen Dreiecks. Für den Schwerpunkt gilt $\overrightarrow{OP} = \frac{1}{3} \left(\overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OR} \right)$ und damit $P\left(\frac{5}{3} \middle \frac{20}{3} \middle \frac{5}{3} \middle \frac{5}$		5	
	Der Radius r_i der Inkugel ist $ \overrightarrow{PM} $. Es ergibt sich $r_i = \sqrt{\left(\frac{1}{3}\right)^2 + \left(-\frac{5}{3}\right)^2 + \left(\frac{7}{3}\right)^2} = \sqrt{\frac{75}{9}} = \frac{5}{3}\sqrt{3}.$	2		
	Die Kugelgleichung lautet somit $K_{I} : \left[\vec{x} - \begin{pmatrix} 2 \\ 5 \\ 4 \end{pmatrix} \right]^{2} = \frac{25}{3}.$	1		
d)	Wenn zwei Punkte in einer Ebene liegen, liegt auch die gesamte Gerade durch diese Punkte in der Ebene. Also reicht es zu zeigen, dass die Koordinaten von A und C die Gleichung der Ebenenschar erfüllen: Für A : $t \cdot 2 + (7t - 1) \cdot 4 + (4 - 30t) = 0$; für C : $t \cdot 2 + (7t - 1) \cdot 4 + (4 - 30t) = 0$. Alternativ kann die Geradengleichung von g_{AC} in die Ebenengleichung eingesetzt werden.	2		

Erweiterte Zeichnung:			
A B a		2	
Für ein geeignetes t seien T und U die Schnittpunkte von F_t mit \overline{BR} bzw. \overline{SD} . Dann ist $ATCU$ nicht nur ein Viereck, sondern wegen der Regularität des Oktaeders eine Raute.		2	
Alle diese Rauten haben die Länge der Diagonalen \overline{AC} gemeinsam. Die Änderung des Flächeninhalts kann nur aus der Änderung der Länge der anderen Diagonalen \overline{TU} ergeben. Diese ist aus geometrischen Gründen maximal an den Rändern und aus Symmetriegründen minimal, wenn T der Mittelpunkt von \overline{BR} ist. Mit $T(1,5 5 0,5)$ folgt $\overrightarrow{MT} = \begin{pmatrix} 1,5 \\ 5 \\ 0.5 \end{pmatrix} - \begin{pmatrix} 2 \\ 5 \\ 0 \\ -3.5 \end{pmatrix}, \text{ also } \overrightarrow{MT} = \sqrt{12,5}.$			
Die gesuchte Fläche ergibt sich damit zu $ \overrightarrow{AC} \cdot \overrightarrow{MT} = 10 \cdot \frac{5\sqrt{2}}{2} = 25\sqrt{2} \approx 35,36$.			3
In Alternativlösungen sollten textliche Ansätze ebenfalls angemessen bepunktet werden.			
	12	15	3

Aufgabe 4

Der niederländische Architekt Blom entwarf Wohnungsbauprojekte mit kubusförmigen Häusern. Jedes einzelne Haus hat einen Wohnbereich in Form eines Würfels (siehe Foto). Der Würfel steht so auf einer Ecke, dass eine der Raumdiagonalen fast vertikal verläuft. In dieser Siedlung haben die Häuser gemeinsame Flächen; als Einzelhaus haben sie folgende Form:

Die Eckpunkte des Würfels in einem kartesischen Koordinatensystem lauten A (0 | 0 | 0), G (6 – $4\sqrt{2}$ | 0 | 8 + $3\sqrt{2}$), C (6 | 0 | 8), D (3 | –5 | 4), wobei eine Längeneinheit einem Meter entspricht.

Runden Sie im Folgenden - falls nötig - alle Ergebnisse auf 2 Nachkommastellen.

 Bestimmen Sie die Größe des Neigungswinkels der Hausfront ABCD zur Bodenebene.

(3P)

- b) Der Kubus hat drei Wohnebenen:
 - Die untere Wohnebene hat die Form eines gleichschenkligen Dreiecks und liegt in einer Höhe von 2 m.
 - Berechnen Sie die Länge der Fußleiste, die für diese Wohnebene nötig ist.

(Zeigen Sie hierfür, dass die Koordinaten des Punktes

$$E(-4\sqrt{2}|0|3\sqrt{2})$$
 lauten.)

(11 P)

- c) Im Inneren des Gebäudes wird im Punkt $R(-0.2 \mid 0 \mid 6.4)$ ein Router installiert, der eine Reichweite von 5m hat.
 - In der unteren Wohnebene soll ein Computer aufgestellt werden. Bestimmen Sie den Bereich auf der vorderen Fußbodenleiste in der unteren Wohnebene, der noch in der Reichweite des Routers liegt.

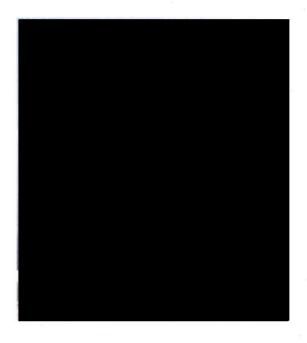
(Hinweis: Die vordere Fußbodenleiste liegt zwischen zwei Punkten $A_1(1,5|-2,5|2)$ und $B_1(1,5|2,5|2)$.)

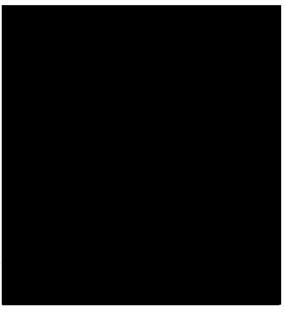
 Der Router lässt sich vom Punkt R aus vertikal nach oben und nach unten verschieben. Bestimmen Sie die maximale Höhe (maximale x₃-Komponente), in der der Router installiert werden muss, damit die gesamte vordere Fußleiste innerhalb der Reichweite liegt.

(8 P)

d) Allgemein habe ein Würfel mit den Punkten A, G und C die Kantenlänge a. Die Punkte haben die Koordinaten

A(0|0|0),
$$G(0|0|\sqrt{3} \cdot a)$$
 und $C(\sqrt{\frac{2}{3}} \cdot a|0|\frac{2}{\sqrt{3}} \cdot a)$.


Zeigen Sie, dass die Punkte B und D dann folgende Koordinaten haben:


$$B\left(\frac{a}{\sqrt{6}} \mid \frac{a}{\sqrt{2}} \mid \frac{a}{\sqrt{3}}\right), \ D\left(\frac{a}{\sqrt{6}} \mid \frac{-a}{\sqrt{2}} \mid \frac{a}{\sqrt{3}}\right). \tag{5 P}$$

e) Ein weiteres, sehr eigenwilliges Hausprojekt finden wir im fhk-Forum der Fachhochschule Konstanz, Ausgabe 2004/2005, auf Seite 52 (siehe Abbildung unten).Die Wärmeverluste eines Hauses verhalten sich annähernd proportional zur Außenfläche des Hauses.

Zeigen Sie, dass ein Kugelhaus bei gleichem Volumen einem Kubushaus mit der Kantenlänge a wärmetechnisch überlegen ist.

		Erwartete Leistung		ordnu wertu			
			ľ	П	Ш		
ć	а)	Der Neigungswinkel wird von den Vektoren \overrightarrow{AC} und z. B. dem Einheitsvektor \overrightarrow{v} , der in Richtung der x_1 -Achse zeigt, gebildet. Mit $\overrightarrow{AC} = \begin{pmatrix} 6 \\ 0 \\ 8 \end{pmatrix}$ und $\overrightarrow{v} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ gilt dann $\cos \alpha = \frac{\overrightarrow{AC} \circ \overrightarrow{v}}{\left \overrightarrow{AC}\right \cdot \left \overrightarrow{v}\right } = \frac{6}{10} \Rightarrow \alpha \approx 53,1^{0}.$	1		÷		
		Alternativer Lösungsweg: Man bestimmt die Normalenvektoren der Ebene E_{ABD} und der x_1 - x_2 - Ebene und berechnet den Winkel, der von beiden Normalenvektoren eingeschlossen wird.					

1

1

1

1

2

1

1

Leistungskurs Mathematik Thema: Analytische Geometrie

b)	Die Gleichung de	Geraden	durch die	Punkte A	A und D lautet
----	------------------	---------	-----------	----------	----------------

$$g: \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 3 \\ -5 \\ 4 \end{pmatrix}.$$

Für die untere Wohnebene in 2 m Höhe muss die x_3 -Komponente 2 sein (Ebene E_0 : $x_3 = 2$). Daraus ergibt sich

$$2 = 0 + 4t$$
 \Leftrightarrow $t = \frac{1}{2}$.

Somit ist $A_1(1,5 \mid -2,5 \mid 2)$ ein gesuchter Eckpunkt in der unteren Wohnebene.

Den Schnittpunkt der Wohnebene mit der Gerade durch A und B erhält man durch Symmetrieüberlegungen: B_1 (1,5 | 2,5 | 2).

Alternative: Analoge Rechnung.

Aufgrund der Symmetrie ist die Strecke $\overline{A_1}B_1$ die Basis des gleichschenkligen Dreiecks $A_1B_1E_1$.

Die Länge der Strecke
$$\overline{A_1B_1}$$
 ist $\left|\overrightarrow{A_1B_1}\right| = \begin{pmatrix} 0 \\ 5 \\ 0 \end{pmatrix} = 5$.

Der Schnittpunkt E_1 der unteren Wohnebene mit der Geraden durch A und E ergibt sich aus folgender Überlegung:

Wegen der Kubusform sind die Vektoren \overrightarrow{CG} und \overrightarrow{AE} identisch. Daher gilt

$$\overrightarrow{AE} = \overrightarrow{CG} = \begin{pmatrix} -4\sqrt{2} \\ 0 \\ 3\sqrt{2} \end{pmatrix} \text{ und dies ergibt } E(-4\sqrt{2} \mid 0 \mid 3\sqrt{2}).$$

Die Gleichung der Geraden durch die Punkte A und E lautet

$$h: \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} -4\sqrt{2} \\ 0 \\ 3\sqrt{2} \end{pmatrix}.$$

Da die die x_3 -Komponente wieder 2 sein muss, ergibt sich

$$2 = 0 + 3\sqrt{2} s \qquad \Leftrightarrow \qquad s = \frac{\sqrt{2}}{3}$$

Durch Einsetzen in den Geradenterm von h ergibt sich der Eckpunkt $E_1(-\frac{8}{3}\mid 0\mid 2)$.

Für die Länge der Strecke $\overline{A_{\mathbf{l}}E_{\mathbf{l}}}$ ergibt sich

$$\left| \overrightarrow{A_1 E_1} \right| = \begin{pmatrix} -8/3 \\ 0 \\ 2 \end{pmatrix} - \begin{pmatrix} 1,5 \\ -2,5 \\ 2 \end{pmatrix} = \begin{pmatrix} -25/6 \\ 2,5 \\ 0 \end{pmatrix} = \sqrt{\frac{425}{18}} \approx 4,86.$$

Die Länge der Fußbodenleiste ist dann

$$l \approx 2 \cdot 4,86m + 5m = 14,72m$$
.

1

Alternativer Lösungsweg zur Bestimmung von A₁:

Gleichung der unteren Wohnebene:
$$E_u: \begin{bmatrix} \bar{x} - \begin{pmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = 0$$
.

Berechnung des Schnittpunkts von E_u und g ergibt ebenfalls den Schnittpunkt A_1 .

Alternativer Lösungsweg zur Bestimmung von B1:

Berechnung von B und anschließend analog wie bei der Bestimmung von A_1 .

c)	Die Kugel K mit dem Mittelpunkt $R(-0.2 \mid 0 \mid 6.4)$ und dem Radius $r = .5$
	beschreibt den Reichweitenbereich des Routers.

Die Kugelgleichung lautet $K: (x_1 + 0.2)^2 + x_2^2 + (x_3 - 6.4)^2 = 5^2$.

1

Um den Reichweitenbereich entlang der Fußbodenleiste zu ermitteln, müssen die Schnittpunkte der Kugel mit der Geraden durch die Punkte A_1 und B_1 bestimmt werden.

$$g_{A_1B_1}: \vec{x} = \begin{pmatrix} 1,5 \\ -2,5 \\ 2 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$$

1

Einsetzen des Terms der Geradengleichung in die Kugelgleichung liefert

$$(1,5+0,2)^2 + (-2,5+r)^2 + (2-6,4)^2 = 5^2$$

$$\Leftrightarrow 1.7^2 + 2.5^2 - 5r + r^2 + 4.4^2 = 25 \Leftrightarrow r^2 - 5r + 3.5 = 0$$

$$\Leftrightarrow r = 2.5 \pm \sqrt{2.75}$$
, also $r \approx 0.8417$ oder $r \approx 4.1583$

1

Daraus ergeben sich durch Einsetzen der Parameter in den Geradenterm folgende Schnittpunkte mit der Kugel:

$$R_1(1,5 \mid -1,66 \mid 2)$$
 und $R_2(1,5 \mid 1,66 \mid 2)$.

1

Die Strecke zwischen R_1 und R_2 stellt den Reichweitenbereich des Routers auf der vorderen Fußbodenleiste dar.

Die maximale Höhe entspricht der x_3 -Komponente des Kugelmittelpunktes $R_m(-0,2\mid 0\mid m)$, der zu den Eckpunkten der vorderen Fußleiste den Abstand 5m hat.

.1

Es gilt

$$\left| \overrightarrow{A_1} \overrightarrow{R_m} \right| = \begin{vmatrix} -0.2 \\ 0 \\ m \end{vmatrix} - \begin{pmatrix} +1.5 \\ -2.5 \\ 2 \end{vmatrix} = \begin{vmatrix} -1.7 \\ +2.5 \\ m-2 \end{vmatrix} = \sqrt{(-1.7)^2 + 2.5^2 + (m-2)^2} = 5$$

$$\Rightarrow$$
 9,14 + m^2 - 4 m + 4 = 25 \Leftrightarrow m^2 - 4 m - 11,86 = 0

und folglich

$$m \approx 5.98$$
 oder $m \approx -1.98$.

2

Aus Symmetriegründen erhält man die gleichen Lösungen für den Punkt B_1 .

Die negative Lösung entfällt, da der Punkt außerhalb des Gebäudes liegt und die maximale Höhe gesucht war.

1

d) $M(\sqrt{\frac{3}{3}} \cdot \frac{s}{2}/0/\frac{1}{\sqrt{3}} \cdot a) \text{ ist die Mitte der Diagonalen } \overline{AC} \cdot \text{Der Vektor } \overline{DB} \text{ ist orthogonal zu dieser Diagonalen und zu } \overline{CG} \text{ und ist somit ein Vielfaches} $ $des \text{ Vektors } \begin{pmatrix} 0\\1\\0 \end{pmatrix} \cdot \begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} \frac{a}{\sqrt{6}}\\0\\\frac{a}{\sqrt{3}} \end{pmatrix} + \frac{a}{2} \cdot \sqrt{2} \cdot \begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} \frac{a}{\sqrt{6}}\\a/\sqrt{3}\\a/\sqrt{3} \end{pmatrix} \text{ bzw.} $ $\overline{OD} = \overline{OM} - \frac{a}{2} \cdot \sqrt{2} \cdot \begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} \frac{a}{\sqrt{6}}\\0\\0\\\frac{a}{\sqrt{3}} \end{pmatrix} - \frac{a}{2} \cdot \sqrt{2} \cdot \begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} a/\sqrt{6}\\a/\sqrt{3}\\a/\sqrt{3} \end{pmatrix} \text{ bzw.} $ $\overline{DD} = \overline{DM} - \frac{a}{2} \cdot \sqrt{2} \cdot \begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} \frac{a}{\sqrt{6}}\\0\\0\\\frac{a}{\sqrt{3}} \end{pmatrix} - \frac{a}{2} \cdot \sqrt{2} \cdot \begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} a/\sqrt{6}\\-a/\sqrt{3}\\a/\sqrt{3} \end{pmatrix} \text{ bzw.} $ Somit lauten die Koordinaten der Punkte B und D $ B\begin{pmatrix} \frac{a}{\sqrt{6}} \mid \frac{a}{\sqrt{2}} \mid \frac{a}{\sqrt{3}} \end{pmatrix}, D\begin{pmatrix} \frac{a}{\sqrt{6}} \mid \frac{-a}{\sqrt{2}} \mid \frac{a}{\sqrt{3}} \end{pmatrix} $ Ausgehend von den Koordinaten eines Punktes lassen sich die Koordinaten des anderen Punktes auch durch Symmetrieüberlegungen auffinden.			g V - a - b - c	A				
$ des \ Vektors \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} .$ $ Wegen \overline{MD} = \frac{a}{2} \cdot \sqrt{2} \ gilt $ $ \overline{DB} = \overline{OM} + \frac{a}{2} \cdot \sqrt{2} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{a}{\sqrt{6}} \\ 0 \\ \frac{a}{\sqrt{3}} \end{pmatrix} + \frac{a}{2} \cdot \sqrt{2} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a/\sqrt{6} \\ a/\sqrt{2} \\ a/\sqrt{3} \end{pmatrix} \text{bzw.}$ $ \overline{DD} \overline{DD} = \overline{DM} - \frac{a}{2} \cdot \sqrt{2} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{a}{\sqrt{6}} \\ 0 \\ \frac{a}{\sqrt{3}} \end{pmatrix} - \frac{a}{2} \cdot \sqrt{2} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a/\sqrt{6} \\ -a/\sqrt{2} \\ a/\sqrt{3} \end{pmatrix}.$ Somit lauten die Koordinaten der Punkte B und D $ B \frac{a}{\sqrt{6}} \frac{a}{\sqrt{2}} \frac{a}{\sqrt{3}} D \frac{a}{\sqrt{6}} \frac{-a}{\sqrt{2}} \frac{a}{\sqrt{3}} D D D D D D D D D $	d)	V = V3		1				
$\overrightarrow{OB} = \overrightarrow{OM} + \frac{a}{2} \cdot \sqrt{2} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{a}{\sqrt{6}} \\ 0 \\ \frac{a}{\sqrt{3}} \end{pmatrix} + \frac{a}{2} \cdot \sqrt{2} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a/\sqrt{6} \\ a/\sqrt{2} \\ a/\sqrt{3} \end{pmatrix} \text{ bzw.}$ $\overrightarrow{OD} = \overrightarrow{OM} - \frac{a}{2} \cdot \sqrt{2} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{a}{\sqrt{6}} \\ 0 \\ \frac{a}{\sqrt{3}} \end{pmatrix} - \frac{a}{2} \cdot \sqrt{2} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a/\sqrt{6} \\ -a/\sqrt{2} \\ a/\sqrt{3} \end{pmatrix}.$ Somit lauten die Koordinaten der Punkte B und D $B\left(\frac{a}{\sqrt{6}} \mid \frac{a}{\sqrt{2}} \mid \frac{a}{\sqrt{3}}\right), D\left(\frac{a}{\sqrt{6}} \mid \frac{-a}{\sqrt{2}} \mid \frac{a}{\sqrt{3}}\right).$ Ausgehend von den Koordinaten eines Punktes lassen sich die Koordinaten des anderen Punktes auch durch Symmetrieüberlegungen auffinden. e) Das Kubushaus hat ein Volumen von a^3 bei einem Oberflächeninhalt von $6a^2$. Die volumengleiche Kugel hat wegen $a^3 = \frac{4}{3}\pi \cdot r^3$ einen Radius von $r = a \cdot \sqrt[3]{\frac{3}{4\pi}}$. Das Kugelhaus hat daher einen Oberflächeninhalt von $O_{Kugel} = 4\pi \cdot \left(\frac{3}{4\pi}\right)^{\frac{2}{3}} a^2 \approx 4,84 \cdot a^2$. Dies entspricht etwa 81 % der Kubusoberfläche. Aufgrund der kleineren Oberfläche hat das Kugelhaus ca. 19 % weniger Wärmeverlust als das Kubushaus. (Oder: Das Kubushaus hat ca. 24 % mehr Wärmeverlust als das Kubushaus.)	4	(0)		1				
$\overrightarrow{OD} = \overrightarrow{OM} - \frac{a}{2} \cdot \sqrt{2} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{a}{\sqrt{6}} \\ 0 \\ \frac{a}{\sqrt{3}} \end{pmatrix} - \frac{a}{2} \cdot \sqrt{2} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a/\sqrt{6} \\ -a/\sqrt{2} \\ a/\sqrt{3} \end{pmatrix}.$ Somit lauten die Koordinaten der Punkte B und D $B\left(\frac{a}{\sqrt{6}} \mid \frac{a}{\sqrt{2}} \mid \frac{a}{\sqrt{3}}\right), \ D\left(\frac{a}{\sqrt{6}} \mid \frac{-a}{\sqrt{2}} \mid \frac{a}{\sqrt{3}}\right).$ Ausgehend von den Koordinaten eines Punktes lassen sich die Koordinaten des anderen Punktes auch durch Symmetrieüberlegungen auffinden. eine Sunktes lassen sich die Koordinaten des anderen Punktes auch durch Symmetrieüberlegungen auffinden.		Wegen $\left \overrightarrow{MD} \right = \frac{a}{2} \cdot \sqrt{2}$ gilt		1	*			
Somit lauten die Koordinaten der Punkte B und D $B\left(\frac{a}{\sqrt{6}} \mid \frac{a}{\sqrt{2}} \mid \frac{a}{\sqrt{3}}\right), \ D\left(\frac{a}{\sqrt{6}} \mid \frac{-a}{\sqrt{2}} \mid \frac{a}{\sqrt{3}}\right).$ Ausgehend von den Koordinaten eines Punktes lassen sich die Koordinaten des anderen Punktes auch durch Symmetrieüberlegungen auffinden. e) Das Kubushaus hat ein Volumen von a^3 bei einem Oberflächeninhalt von $6a^2$. Die volumengleiche Kugel hat wegen $a^3 = \frac{4}{3}\pi \cdot r^3$ einen Radius von $r = a \cdot \sqrt[3]{\frac{3}{4\pi}}$. Das Kugelhaus hat daher einen Oberflächeninhalt von $O_{Kugel} = 4\pi \cdot \left(\frac{3}{4\pi}\right)^{\frac{2}{3}} a^2 \approx 4_r 84 \cdot a^2$. Dies entspricht etwa 81 % der Kubusoberfläche. Aufgrund der kleineren Oberfläche hat das Kugelhaus ca. 19 % weniger Wärmeverlust als das Kubushaus. (Oder: Das Kubushaus hat ca. 24 % mehr Wärmeverlust als das Kugelhaus.)		$(\sqrt{3})$		62	431			
$B\left(\frac{a}{\sqrt{6}} \mid \frac{a}{\sqrt{2}} \mid \frac{a}{\sqrt{3}}\right), \ D\left(\frac{a}{\sqrt{6}} \mid \frac{-a}{\sqrt{2}} \mid \frac{a}{\sqrt{3}}\right).$ Ausgehend von den Koordinaten eines Punktes lassen sich die Koordinaten des anderen Punktes auch durch Symmetrieüberlegungen auffinden. e) Das Kubushaus hat ein Volumen von a^3 bei einem Oberflächeninhalt von $6a^2$. Die volumengleiche Kugel hat wegen $a^3 = \frac{4}{3}\pi \cdot r^3$ einen Radius von $r = a \cdot \sqrt[3]{\frac{3}{4\pi}}$. Das Kugelhaus hat daher einen Oberflächeninhalt von $O_{Kugel} = 4\pi \cdot \left(\frac{3}{4\pi}\right)^{\frac{2}{3}} a^2 \approx 4,84 \cdot a^2$. Dies entspricht etwa 81 % der Kubusoberfläche. Aufgrund der kleineren Oberfläche hat das Kugelhaus ca. 19 % weniger Wärmeverlust als das Kubushaus. (Oder: Das Kubushaus hat ca. 24 % mehr Wärmeverlust als das Kugelhaus.)		$\overrightarrow{OD} = \overrightarrow{OM} - \frac{a}{2} \cdot \sqrt{2} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{a}{\sqrt{6}} \\ 0 \\ \frac{a}{\sqrt{3}} \end{pmatrix} - \frac{a}{2} \cdot \sqrt{2} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a/\sqrt{6} \\ -a/\sqrt{2} \\ a/\sqrt{3} \end{pmatrix}.$						
Ausgehend von den Koordinaten eines Punktes lassen sich die Koordinaten des anderen Punktes auch durch Symmetrieüberlegungen auffinden. e) Das Kubushaus hat ein Volumen von a^3 bei einem Oberflächeninhalt von $6a^2$. Die volumengleiche Kugel hat wegen $a^3 = \frac{4}{3}\pi \cdot r^3$ einen Radius von $r = a \cdot \sqrt[3]{\frac{3}{4\pi}}$. Das Kugelhaus hat daher einen Oberflächeninhalt von $O_{Kugel} = 4\pi \cdot \left(\frac{3}{4\pi}\right)^{\frac{3}{3}}a^2 \approx 4,84 \cdot a^2$. Dies entspricht etwa 81 % der Kubusoberfläche. Aufgrund der kleineren Oberfläche hat das Kugelhaus ca. 19 % weniger Wärmeverlust als das Kubushaus. (Oder: Das Kubushaus hat ca. 24 % mehr Wärmeverlust als das Kugelhaus.)		Somit lauten die Koordinaten der Punkte B und D						
Koordinaten des anderen Punktes auch durch Symmetrieüberlegungen auffinden. e) Das Kubushaus hat ein Volumen von a^3 bei einem Oberflächeninhalt von $6a^2$. Die volumengleiche Kugel hat wegen $a^3 = \frac{4}{3}\pi \cdot r^3$ einen Radius von $r = a \cdot \sqrt[3]{\frac{3}{4\pi}}$. Das Kugelhaus hat daher einen Oberflächeninhalt von $O_{Kugel} = 4\pi \cdot \left(\frac{3}{4\pi}\right)^{\frac{2}{3}}a^2 \approx 4,84 \cdot a^2$. Dies entspricht etwa 81 % der Kubusoberfläche. Aufgrund der kleineren Oberfläche hat das Kugelhaus ca. 19 % weniger Wärmeverlust als das Kubushaus. (Oder: Das Kubushaus hat ca. 24 % mehr Wärmeverlust als das Kugelhaus.)		$B\left(\frac{a}{\sqrt{6}} \mid \frac{a}{\sqrt{2}} \mid \frac{a}{\sqrt{3}}\right), \ D\left(\frac{a}{\sqrt{6}} \mid \frac{-a}{\sqrt{2}} \mid \frac{a}{\sqrt{3}}\right).$		2				
$6a^2$. Die volumengleiche Kugel hat wegen $a^3=\frac{4}{3}\pi\cdot r^3$ einen Radius von $r=a\cdot \sqrt[3]{\frac{3}{4\pi}}$. Das Kugelhaus hat daher einen Oberflächeninhalt von $O_{Kugel}=4\pi\cdot \left(\frac{3}{4\pi}\right)^{\frac{2}{3}}a^2\approx 4,84\cdot a^2$. Dies entspricht etwa 81 % der Kubusoberfläche. Aufgrund der kleineren Oberfläche hat das Kugelhaus ca. 19 % weniger Wärmeverlust als das Kubushaus. (Oder: Das Kubushaus hat ca. 24 % mehr Wärmeverlust als das Kugelhaus.)		Koordinaten des anderen Punktes auch durch Symmetrieüberlegungen						
$6a^2$. Die volumengleiche Kugel hat wegen $a^3=\frac{4}{3}\pi\cdot r^3$ einen Radius von $r=a\cdot \sqrt[3]{\frac{3}{4\pi}}$. Das Kugelhaus hat daher einen Oberflächeninhalt von $O_{Kugel}=4\pi\cdot \left(\frac{3}{4\pi}\right)^{\frac{2}{3}}a^2\approx 4,84\cdot a^2$. Dies entspricht etwa 81 % der Kubusoberfläche. Aufgrund der kleineren Oberfläche hat das Kugelhaus ca. 19 % weniger Wärmeverlust als das Kubushaus. (Oder: Das Kubushaus hat ca. 24 % mehr Wärmeverlust als das Kugelhaus.)	e)	Das Kubushaus hat ein Volumen von a³ bei einem Oberflächeninhalt von						
Das Kugelhaus hat daher einen Oberflächeninhalt von $O_{Kugel} = 4\pi \cdot \left(\frac{3}{4\pi}\right)^{\frac{2}{3}} a^2 \approx 4,84 \cdot a^2 \text{. Dies entspricht etwa 81 \% der}$ Kubusoberfläche. Aufgrund der kleineren Oberfläche hat das Kugelhaus ca. 19 % weniger Wärmeverlust als das Kubushaus. (Oder: Das Kubushaus hat ca. 24 % mehr Wärmeverlust als das Kugelhaus.)								
$O_{Kugel} = 4\pi \cdot \left(\frac{3}{4\pi}\right)^{\frac{2}{3}} a^2 \approx 4,84 \cdot a^2$. Dies entspricht etwa 81 % der Kubusoberfläche. Aufgrund der kleineren Oberfläche hat das Kugelhaus ca. 19 % weniger Wärmeverlust als das Kubushaus. (Oder: Das Kubushaus hat ca. 24 % mehr Wärmeverlust als das Kugelhaus.)		$r = a \cdot \sqrt[3]{\frac{3}{4\pi}} \ .$						
Kubusoberfläche. Aufgrund der kleineren Oberfläche hat das Kugelhaus ca. 19 % weniger Wärmeverlust als das Kubushaus. (Oder: Das Kubushaus hat ca. 24 % mehr Wärmeverlust als das Kugelhaus.)		Das Kugelhaus hat daher einen Oberflächeninhalt von						
Kubusoberfläche. Aufgrund der kleineren Oberfläche hat das Kugelhaus ca. 19 % weniger Wärmeverlust als das Kubushaus. (Oder: Das Kubushaus hat ca. 24 % mehr Wärmeverlust als das Kugelhaus.)		$O_{Kugel} = 4\pi \cdot \left(\frac{3}{4\pi}\right)^{\frac{2}{3}} a^2 \approx 4,84 \cdot a^2$. Dies entspricht etwa 81 % der			3			
12 15 3		Kubusoberfläche. Aufgrund der kleineren Oberfläche hat das Kugelhaus ca. 19 % weniger Wärmeverlust als das Kubushaus. (Oder: Das			3			
			12	15	3			

Aufgabe 5

Um die Unfallgefahr zu verringern, ist in Deutschland die Benutzung eines Handys im Auto durch den Fahrer nur mit einer Freisprecheinrichtung erlaubt. Weil eine gut funktionierende Freisprecheinrichtung aber relativ teuer ist, telefonieren viele Fahrer trotzdem unerlaubt während der Fahrt mit dem Handy. Im Folgenden soll stets unter "Ein Fahrer telefoniert" verstanden werden: Dieser Fahrer telefoniert während der Fahrt mit seinem Handy, ohne eine Freisprechanlage zu verwenden (er begeht also eine Ordnungswidrigkeit). Auf einer belebten Straße soll der Anteil p der Autofahrer untersucht werden, die zum Zeitpunkt einer Kontrolle telefonieren. Der Anteil p hängt von Ort und Zeitpunkt der Kontrolle ab. Dabei wird angenommen, dass die Fahrer sich in ihrem Telefonierverhalten gegenseitig nicht beeinflussen.

- a) Bestimmen Sie in Abhängigkeit von einem konstanten p die Wahrscheinlichkeit für folgende Ereignisse:
 - A: Bei zehn nacheinander vorbeifahrenden Autos telefonieren nur die Fahrer des dritten und des fünften Autos.
 - B: Bei zehn nacheinander vorbeifahrenden Autos telefonieren die Fahrer der ersten vier Autos gar nicht, aber trotzdem telefonieren genau zwei Fahrer.

Begründen Sie Ihr Vorgehen.

(7 P)

b) Berechnen Sie, wie groß der Anteil p der telefonierenden Fahrer mindestens sein muss, wenn unter 100 vorbeifahrenden Autos mit mehr als 95% Wahrscheinlichkeit mindestens eines von einem telefonierenden Fahrer gelenkt wird.

Auf der Schlossallee wird an einem Mittwoch zwischen 15 Uhr und 16 Uhr eine Kontrolle durchgeführt. Während dieser Zeit sei der Anteil p jener Fahrer, die zu einem beliebigen Zeitpunkt während dieser Zeitspanne gerade telefonieren, 3 Prozent.

Bestimmen Sie die Anzahl der Autos, die mindestens kontrolliert werden müssen, damit man mit einer Wahrscheinlichkeit von mehr als 80% mindestens einen telefonierenden Fahrer erwischt.

Vergleichen und interpretieren Sie Ihre Ergebnisse der beiden Teilaufgaben.

(8 P)

c) Nun kontrolliert man auf einer Zufahrt zu einer beliebten Diskothek zwischen 21 Uhr und 23 Uhr. Hier ist die Telefonierwahrscheinlichkeit außergewöhnlich hoch, nämlich p=20%. Die Polizisten wetten untereinander, beim wievielten Auto sie erstmals einen telefonierenden Fahrer erwischen.

Bestimmen Sie die Wahrscheinlichkeiten dafür, dass dies

- beim sechsten,
- nach dem sechsten Auto passiert.

Einer der Polizisten hat von seiner Freundin, einer Mathematiklehrerin, gehört, dass in so einer Situation der

Erwartungswert $E(X) = \frac{1}{p}$ sei, wenn die Zufallsvariable X die

möglichen Anzahlen der kontrollierten Fahrzeuge bis zum ersten telefonierenden Fahrer beschreibe (das Fahrzeug des Telefonierers wird dabei mitgezählt).

Beweisen Sie diese allgemeine Beziehung unter Verwendung der Formel

$$1 + 2q + 3q^{2} + 4q^{3} + \dots = \sum_{k=1}^{\infty} kq^{k-1} = \frac{1}{(1-q)^{2}}.$$
 (8 P)

d) Nach einigen Unfällen in den Abendstunden, bei denen Autofahrer telefoniert hatten, will die örtliche Polizei in ihrer Stadt verstärkte Kontrollen durchführen, wenn der Anteil der telefonierenden Autofahrer zwischen 18 und 20 Uhr mehr als 15% beträgt. Dazu überprüft sie in der Stadt 1000 fahrende Autos zwischen 18 und 20 Uhr.

Entwickeln Sie auf einem Signifikanzniveau von 10 % eine Entscheidungsregel für die Nullhypothese, dass keine verstärkten Kontrollen notwendig sind.

(7 P)

Gausssche Integralfunktion $\Phi(z) = \int\limits_{-\infty}^{z} \phi(x) \ dx$

Z	Φ(-z)	Φ(z)	Z	Φ(-z)	Ф(z)]	Z	Φ(-z)	Φ(z)		Z	Φ(-z)	Φ(z)
0.01	0, 4960	0, 5040	0.76	0,	0,		1.51	0,	0, 9345		2.26	0, 0119	0,
0,01	4900	5080	0,76 0,77	2236 2206	7764 7794		1,51 1,52	0655 0643	9343		2,26 2,27	0119	9881 9884
0,03	4880	5120	0,78	2177	7823		1,53	0630	9370		2,28	0113	9887
0.04	4840	5160	0,79	2148	7852		1,54	0618	9382		2,29	0110	9890
0,05	4801	5199	0,80	2119	7881		1,55	0606	9394		2,30	0107	9893
0,06	4761	5239	0,81	2090	7910		1,56	0594	9406		2,31	0104	9896
0,07	4721	5279	0,82	2061	7939		1,57	0582	9418		2,32	0102	9898
0,08	4681	5319	0,83	2033	7967		1,58	0571	9429		2,33	0099	9901
0,09	4641	5359	0,84	2005	7995		1,59	0559	9441		2,34	0096	9904
0,10	4602	5398	0,85	1977	8023		1,60	0548	9452		2,35	0094	9906
0,11	4562	5438	0,86	1949	8051		1,61	0537	9463		2,36	0091	9909 9911
0,12 0,13	4522 4483	5478 5517	0,87 0,88	1922 1894	8078 8106		1,62 1,63	0526 0516	9474 9484		2,37 2,38	0089 0087	9913
0,13	4443	5557	0,89	1867	8133		1,64	0505	9495		2,39	0087	9916
0,15	4404	5596	0,90	1841	8159		1,65	0495	9505		2,40	0082	9918
0,16	4364	5636	0.91	1814	8186		1,66	0485	9515		2,41	0080	9920
0,17	4325	5675	0,92	1788	8212		1,67	0475	9525		2,42	0078	9922
0.18	4286	5714	0,93	1762	8238		1,68	0465	9535		2,43	0075	9925
0,19	4247	5753	0,94	1736	8264		1,69	0455	9545		2,44	0073	9927
0,20	4207	5793	0,95	1711	8289		1,70	0446	9554		2,45	0071	9929
0,21	4168	5832	0,96	1685	8315		1,71	0436	9564		2,46	0069	9931
0,22	4129	5871	0,97	1660	8340		1,72	0427	9573		2,47	0068	9932
0,23	4090	5910	0,98	1635	8365		1,73	0418	9582		2,48	0066	9934
0,24	4052	5948	0,99	1611	8389		1,74	0409	9591 9599		2,49	0064 0062	9936 9938
0,25	4013 3974	5987	1,00	1587	8413		1,75	0401			2,50	100000000	9940
0,26 0,27	3936	6026 6064	1,01 1,02	1562 1539	8438 8461		1,76	0392	9608 9616		2,51	0060 0059	9940
0,28	3897	6103	1,03	1515	8485		1,78	0375	9625		2,53	0057	9943
0,29	3859	6141	1,04	1492	8508		1,79	0367	9633		2,54	0055	9945
0,30	3821	6179	1,05	1469	8531		1,80	0359	9641		2,55	0054	9946
0,31	3783	6217	1,06	1446	8554		1,81	0351	9649		2,56	0052	9948
0,32	3745	6255	1,07	1423	8577		1,82	0344	9656		2,57	0051	9949
0,33	3707	6293	1,08	1401	8599		1,83	0336	9664		2,58	0049	9951
0,34	3669	6331	1,09	1379	8621		1,84	0329	9671		2,59	0048	9952
0,35	3632	6368	1,10	1357	8643		1,85	0322	9678		2,60	0047	9953
0,36	3594	6406	1,11	1335	8665		1,86	0314	9686		2,61	0045	9955
0,37	3557	6443	1,12	1314	8686		1,87	0307	9693		2,62	0044	9956
0,38	3520 3483	6480 6517	1,13 1,14	1292 1271	8708 8729		1,88 1,89	0301 0294	9699 9706		2,63 2,64	0043 0041	9957 9959
0,40	3446	6554	1,15	1251	8749		1,90	0287	9713		2,65	0040	9960
0,41	3409	6591	1,16	1230	8770		1.91	0281	9719		2,66	0039	9961
0,42	3372	6628	1,17	1210	8790		1.92	0274	9726		2,67	0038	9962
0,43	3336	6664	1,18	1190	8810		1,93	0268	9732		2,68	0037	9963
0.44	3300	6700	1,19	1170	8830		1,94	0262	9738		2.69	0036	9964
0,45	3264	6736	1,20	1151	8849		1,95	0256	9744		2,70	0035	9965
0,46	3228	6772	1,21	1131	8869		1,96	0250	9750		2,71	0034	9966
0,47	3192	6808	1,22	1112	8888		-1.97	0244	9756		2,72	0033	9967
0,48	3156	6844	1,23	1093 1075	8907 8925		1,98	0239 0233	9761		2,73	0032 0031	9968 9969
0,49	3121 3085	6879 6915	1,24 1,25	1075	8923 8944		1,99 2,00	0233	9767 9772		2,74 2,75	0031	9970
0,50	3050	6950	1,26	1038	8962		2,00	0222	9778		2,76	0029	9971
0,51	3015	6985	1,27	1020	8980		2,02	0217	9783		2,77	0029	9972
0,53	2981	7019	1.28	1003	8997		2,03	0212	9788		2,78	0027	9973
0,54	2946	7054	1,29	0985	9015		2,04	0207	9793		2,79	0026	9974
0,55	2912	7088	1,30	0968	9032		2,05	0202	9798		2,80	0026	9974
0,56	2877	7123	1,31	0951	9049		2,06	0197	9803	in .	2,81	0025	9975
0,57	2843	7157	1,32	0934	9066		2,07	0192	9808		2,82	0024	9976
0,58	2810	7190	1,33	0918	9082		2,08	0188	9812		2,83	0023	9977
0,59	2776	7224	1,34	0901	9099		2,09	0183	9817		2,84	0023	9977
0,60	2743	7257	1,35	0885	9115		2,10	0179	9821		2,85	0022	9978
0,61	2709	7291 7324	1,36	0869 0853	9131 9147		2,11 2,12	0174 0170	9826 9830		2,86 2,87	0021 0021	9979 9979
0,62	2676 2643	7357	1,37 1,38	0833	9147		2,12	0170	9834 9834		2,87	0021	99/9
0,64	2611	7389	1,39	0823	9177		2,13	0162	9838		2,89	0019	9981
0,65	2578	7422	1,40	0808	9192		2,15	0158	9842		2,90	0019	9981
0,66	2546	7454	1,41	0793	9207		2,16	0154	9846		2,91	0018	9982
0,67	2514	7486	1,42	0778	9222		2.17	0150	9850		2.92	0018	9982
0,68	2483	7517	1,43	0764	9236		2,18	0146	9854		2,93	0017	9983
0,69	2451	7549	1,44	0749	9251		2,19	0143	9857		2,94	0016	9984
0,70	2420	7580	1,45	0735	9265		2,20	0139	9861		2,95	0016	9984
0,71	2389	7611	1,46	0721	9279		2,21	0136	9864		2,96	0015	9985
0,72	2358	7642	1,47	0708	9292		2,22	0132	9868		2,97	0015	9985
0,73 0,74	2327 2296	7673 7704	1,48 1,49	0694 0681	9306 9319		2,23	0129 0125	9871 9875		2,98 2,99	0014 0014	9986 9986
0,74	2266	7734	1,50	0668	9319		2,24 2,25	0123	9878		3,00	0014	9987
5,75	-200	7.7.47.4	1,000	3340		J	2,40	0.22	201.0	ı	2,00	0010	2500

Erwartungshorizont

	Erwartete Lösung	Zuordnung Bewertung		
		I	II	III
a)	Man kann sich die Problemstellung durch ein Baumdiagramm verdeutlichen. An jedem Verzweigungspunkt gehen zwei Pfade ab: einer für das Ereignis T , dass man einen Telefonierer ertappt, und einen für das Gegenereignis \overline{T} . Dann gilt			
	$P(\overline{T}\overline{T}T\overline{T}\overline{T}\overline{T}\overline{T}\overline{T}T) = (1-p)^8 \cdot p^2.$	2		
	Der Fall, dass die ersten vier Fahrer nicht telefonieren, tritt mit der Wahrscheinlichkeit $(1-p)^4$ auf.	2	1	
	Die Wahrscheinlichkeit, dass sich unter den darauf folgenden sechs Fahrern zwei Telefonierer befinden, ist mittels einer binomialverteilten Zufallsvariablen X mit den Parametern n = 6 und p zu bestimmen. Es ist			
	$P(X=2) = {6 \choose 2} \cdot p^2 \cdot (1-p)^4 = 15p^2 \cdot (1-p)^4.$		2	
	Die Wahrscheinlichkeit des zusammengesetzten Ereignisses ergibt sich als Produkt der beiden Einzelwahrscheinlichkeiten, da es sich um ein Und-Ereignis		1	
	handelt. $P(B) = {6 \choose 2} \cdot p^2 \cdot (1-p)^8 = 15 p^2 \cdot (1-p)^8.$		1	
b)	Die Zufallsvariable X, die die möglichen Anzahlen von telefonierenden Fahrern beschreibt, ist binomialverteilt mit den Parametern n = 100 und dem unbekannten p. p ist so zu bestimmen, dass $P(X \ge 1) > 0.95$ beträgt.	1		
	$P(X \ge 1) = 1 - P(X = 0) = 1 - (1 - p)^{100} > 0.95 \Leftrightarrow (1 - p)^{100} < 0.05$			
	$\Rightarrow 1 - p < \sqrt[100]{0,05} \Leftrightarrow p > 1 - \sqrt[100]{0,05} \approx 0,0295.$	2		
	Für die zweite Teilaufgabe ist die Zufallsvariable X, die die möglichen Anzahlen von telefonierenden Fahrern beschreibt, binomialverteilt mit dem unbekannten Parameter n und der bekannten Wahrscheinlichkeit $p = 0.03$. $P(X \ge 1) = 1 - P(X = 0) = 1 - 0.97^n > 0.8 \Leftrightarrow 0.97^n < 0.2$.			
	Logarithmieren ergibt $n \cdot \ln(0.97) < \ln(0.2)$	2		
	und damit $n > \frac{\ln(0,2)}{\ln(0,97)} \approx 52.8$. Es müssen also mindestens 53 Autos kontrolliert werden.		1	
	Die Wahrscheinlichkeiten p, dass ein Fahrer eines vorbeifahrenden Autos telefoniert, sind bei beiden Problemstellungen nahezu identisch. Je größer nun die Anzahl der zu kontrollierenden Autos ist, desto größer ist die Wahrscheinlichkeit, dass man mindestens einen telefonierenden Fahrer ertappt. Dies wird in beiden Lösungen durch die Wahrscheinlichkeiten 95% bei n = 100 und 80% bei n = 53 deutlich.		2	

	Erwartete Lösung			
c)	Man kann sich die Problemstellung durch ein Baumdiagramm verdeutlichen. An jedem Verzweigungspunkt gehen zwei Pfade ab: einer für das Ereignis T , dass man einen Telefonierer ertappt, und einen für das Gegenereignis \overline{T} . Dann gilt $P(\overline{TTTTTT}) = 0.8^5 \cdot 0.2 \approx 0.0655$.	2		
	Die Wahrscheinlichkeit, dass erst nach dem sechsten Auto der erste Telefonierer ertappt wird, kann durch die Gegenwahrscheinlichkeit errechnet werden, dass nämlich schon unter den ersten sechs Autos der erste Telefonierer war:			
	$P = 1 - (0.2 + 0.8 \cdot 0.2 + 0.8^{2} \cdot 0.2 + 0.8^{3} \cdot 0.2 + 0.8^{4} \cdot 0.2 + 0.8^{5} \cdot 0.2) \approx 0.2621.$			
	Alternativ: $P(\overline{T}\overline{T}\overline{T}\overline{T}\overline{T}\overline{T}) = 0.8^6 \approx 0.2621$.		3	
	Es kennzeichne X die Zufallsvariable, deren Werte angeben, beim wievielten Auto erstmalig ein telefonierender Fahrer erwischt wird. X nimmt dann die			
	Werte 1, 2, 3, mit den Wahrscheinlichkeiten $P(X = k) = p \cdot q^{k-1}$			
	mit $q = 1 - p$ an. Der Erwartungswert von X ist dann			
	$E(X) = 1 \cdot p + 2 \cdot q \cdot p + 3 \cdot q^2 \cdot p + \dots = \sum_{k=1}^{\infty} k \cdot q^{k-1} \cdot p = p \cdot \sum_{k=1}^{\infty} k \cdot q^{k-1}.$			
	Die Anwendung der angegebenen Formel ergibt			
	$E(X) = p \frac{1}{(1-q)^2} = \frac{p}{p^2} = \frac{1}{p}.$			
	Die Freundin hatte Recht.			3

d)	Die Nullhypothese, dass keine verstärkten Kontrollen notwendig sein sollen, besagt, dass $p \le 0.15$ anzunehmen ist. Ein Indiz dafür, diese Hypothese abzulehnen, ist, wenn eine durchzuführende Überprüfung von vorbeifahrenden Autos eine recht große Anzahl von Telefonierern ergibt. Der Ablehnungsbereich des Tests ist also ein Intervall [c+1; 1000].	2		
	Die Testvariable T ist als binomialverteilt anzunehmen. Sie hat die Parameter $n=1000$ und p mit $p \le 0,15$. Wegen $1000 \cdot p \cdot (1-p) \ge 1000 \cdot 0,15 \cdot 0,85 = 127,5 \ge 9$ kann T als näherungsweise normalverteilt ansehen.	1		
	Für den Ablehnungsbereich gilt dann			
	$P(T \ge c + 1) = 1 - P(T \le c) \approx 1 - \Phi\left(\frac{c + 0.5 - 150}{\sqrt{1000 \cdot 0.15 \cdot 0.85}}\right) \le 0.1. \text{ Folglich ist}$			
	$\Phi\left(\frac{c-149,5}{\sqrt{127,5}}\right) \ge 0.9 \text{ . Aus dem Tafelwerk entnimmt man } \frac{c-149,5}{\sqrt{127,5}} \ge 1,282 \text{ .}$			
	Daraus folgt $c \ge 149,5+1,282 \cdot \sqrt{127,5} \approx 163,98$. Also ist c mindestens 164 und damit ist als größter Ablehnungsbereich [165; 1000] zu wählen.			
	Als Entscheidungsregel erhält man:			
	Werden höchstens 164 Telefonierer angetroffen, werden keine verstärkten Kontrollen durchgeführt. Sollten 165 oder mehr Telefonierer angetroffen werden, so wird die Polizei mehr Kontrollen durchführen.		4	
	Werden nur zweistellige Tabellenwerte verwendet oder wird ohne Korrekturglied gearbeitet, so sind die Rechnungen entsprechend zu verändern.			
		12	15	3

Aufgabe 6

Die Stadtwerke Lübeck haben in den vergangenen Jahren mit ihrem Busverkehr ein Defizit eingefahren. Erfreulicherweise konnte der Anteil der Schwarzfahrer im Busverkehr auf 8 % gesenkt werden, weil alle Fahrgäste vorn beim Fahrer einsteigen müssen.

a) Beschreiben Sie, unter welchen Umständen es sinnvoll ist, die Zufallsvariable X, die die Anzahl der Fahrgäste beschreibt, die bei einer Kontrolle keinen gültigen Fahrschein besitzen, als binomialverteilt anzunehmen. Geben Sie zwei Situationen an, in denen diese Voraussetzungen für eine Binomialverteilung nicht erfüllt sind.

(4 P)

- b) Die Zufallsvariable X sei binomialverteilt mit p = 0.08.
 - Berechnen Sie die Wahrscheinlichkeit dafür, dass mindestens zwei von 50 Fahrgästen keinen Fahrschein besitzen.
 - Berechnen Sie die Gruppengröße, ab der die Anwendung der Normalverteilung als Näherung sinnvoll ist.
 - Bestimmen Sie n\u00e4herungsweise die Wahrscheinlichkeit, dass sich unter 800 kontrollierten Fahrg\u00e4sten (dies entspricht der Tagesleistung eines Kontrolleurteams) h\u00f6chstens 50 Schwarzfahrer befinden.

(9 P)

c) Ein Mathematik-Kurs mit 25 Personen muss bei einer Exkursion in Lübeck eine Station mit dem Bus fahren. Ein ortskundiger Schüler berichtet, dass ein auftauchendes Kontrolleurteam auf dieser Strecke nur genau vier Personen überprüfen könne und dass die Wahrscheinlichkeit bei 25 Personen für das Erwischen mindestens eines Schwarzfahrers so ca. 28,4% betrage, wenn man wie in Teilaufgabe b) die Zufallsvariable X als binomialverteilt mit p = 0,08 voraussetzt.

Falls der Kurs in einen leeren Bus einsteigen würde und nur 23 Personen einen Fahrschein gelöst hätten, so wäre bei einer Kontrolle die Wahrscheinlichkeit dafür, dass mindestens einer der beiden Schwarzfahrer entdeckt werden würde, größer als 28,4%, so lautete aber die Mehrheitsmeinung im Kurs.

Berechnen Sie die erwähnten Wahrscheinlichkeiten und entscheiden Sie damit, ob die Mehrheitsmeinung korrekt ist.

(6 P)

d) Durch die Möglichkeit, einen Fahrschein mit dem Handy zu kaufen, sollte der Anteil der Schwarzfahrer weiter gesenkt werden (weil jetzt am Automaten nicht nach passendem Geld gesucht werden muss). Dieses mit hohem Verwaltungsaufwand verbundene Angebot wird von den Kunden begeistert angenommen. Es lohnt sich für die Stadtwerke Lübeck aber finanziell nur dann, wenn sich der Anteil der Schwarzfahrer dadurch auf unter 6 % reduziert. Ob es sich lohnt, soll ein Signifikanztest mit 2000 zu kontrollierenden Fahrgästen zeigen.

Entwickeln Sie einen entsprechenden Test mit Signifikanzniveau 5% und formulieren Sie die Entscheidungsregeln.

(8 P)

e) Beweisen Sie folgende Aussage:

Soll bei einem Bernoulli-Experiment die Wahrscheinlichkeit für mindestens einen Treffer (bei Trefferwahrscheinlichkeit p) größer oder gleich a mit 0 < a < 1 sein, so gilt für die Länge n der Bernoulli-Kette:

$$n \geq \frac{ln(1-a)}{ln(1-p)} \ .$$

(3 P)

Gausssche Integralfunktion $\Phi(z) = \int\limits_{-\infty}^{z} \phi(x) \; dx$

z	Φ(-z)	Φ(z)	Z	Φ(-z)	Φ(z)	Z	Φ(-z)	Ф(z)	Z	Φ(-z)	Ф(z)
2000000000	0,	0,		0,	0,		0,	0,	200-000	0,	0,
0,01	4960	5040	0,76	2236	7764	1,51	0655	9345	2,26	0119	9881
0,02	4920	5080	0,77	2206	7794	1,52	0643	9357	2,27	0116	9884
0,03	4880	5120	0,78	2177	7823	1,53	0630	9370	2,28	0113	9887
0,04	4840	5160	0,79	2148	7852	1,54	0618	9382	2,29	0110	9890
0,05	4801	5199	0,80	2119	7881	1,55	0606	9394	2,30	0107	9893
0,06	4761	5239	0,81	2090	7910	1,56	0594	9406	2,31	0104	9896
0,07	4721	5279	0,82	2061	7939	1,57	0582	9418	2,32	0102	9898
0,08	4681	5319	0,83	2033	7967	1,58	0571	9429	2,33	0099	9901
0,09	4641	5359	0,84	2005	7995	1,59	0559	9441	2,34	0096	9904
0,10	4602	5398	0,85	1977	8023	1,60	0548	9452	2,35	0094	9906
0,11	4562	5438	0,86	1949	8051	1,61	0537	9463	2,36	0091	9909
0,12	4522	5478	0,87	1922	8078	1,62	. 0526	9474	2,37	0089	9911
0,13	4483	5517	0,88	1894	8106	1,63	0516	9484	2,38	0087	9913
0,14	4443	5557	0,89	1867	8133	1,64	0505	9495	2,39	0084	9916
0,15	4404	5596	0,90	1841	8159	1,65	0495	9505	2,40	0082	9918
0,16	4364	5636	0,91	1814	8186	1,66	0485	9515	2,41	0080	9920
0,17	4325	5675	0,92	1788	8212	1,67	0475	9525	2,42	0078	9922
0,18	4286	5714	0,93	1762	8238	1,68	0465	9535	2,43	0075	9925
0.19	4247	5753	0,94	1736	8264	1,69	0455	9545	2,44	0073	9927
0,20	4207	5793	0,95	1711	8289	1,70	0446	9554	2,45	0071	9929
0,21	4168	5832	0.96	1685	8315	1,71	0436	9564	2,46	0069	9931
0,22	4129	5871	0,97	1660	8340	1,72	0427	9573	2,47	0068	9932
0,23	4090	5910	0,98	1635	8365	1,73	0418	9582	2,48	0066	9934
0,24	4052	5948	0,99	1611	8389	1,74	0409	9591	2,49	0064	9936
0,25	4013	5987	1,00	1587	8413	1,75	0401	9599	2,50	0062	9938
0,26	3974	6026	1,01	1562	8438	1,76	0392	9608	2,51	0060	9940
0,27	3936	6064	1,02	1539	8461	1,77	0384	9616	2,52	0059	9941
0,28	3897	6103	1,03	1515	8485	1,78	0375	9625	2,53	0057	9943
0,29	3859	6141	1,04	1492	8508	1,79	0367	9633	2,54	0055	9945
0,30	3821	6179	1,05	1469	8531	1,80	0359	9641	2,55	0054	9946
0,31	3783	6217	1,06	1446	8554	1,81	0351	9649	2,56	0052	9948
0,32	3745	6255	1,07	1423	8577	1,82	0344	9656	2,57	0051	9949
0,33	3707	6293	1,08	1401	8599	1,83	0336	9664	2,58	0049	9951
0,34	3669	6331	1,09	1379	8621	1,84	0329	9671	2,59	0048	9952
0,35	3632	6368	1,10	1357	8643	1,85	0322	9678	2,60	0047	9953
0,36	3594	6406	1,11	1335	8665	1,86	0314	9686	2,61	0045	9955
0,37	3557	6443	1,12	1314	8686	1,87	0307	9693	2,62	0043	9956
0,38	3520	6480	1,13	1292	8708	1,88	0301	9699	2,63	0043	9957
0,39	3483	6517	1,14	1271	8729	1,89	0294	9706	2,64	0041	9959
0,40	3446	6554	1,15	1251	8749	1,90	0287	9713	2,65	0040	9960
0,41	3409	6591	1,16	1230	8770	1,91	0281	9719	2,66	0039	9961
0,41	3372	6628	1,17	1210	8790	1,92	0274	9726	2,67	0039	9962
0,43	3336	6664	1,18	1190	8810	1,93	0268	9732	2,68	0037	9963
0,44	3300	6700	1,19	1170	8830	1,94	0262	9738	2,69	0036	9964
0,45	3264	6736	1,20	1151	8849	1,95	0256	9744	2,70	0035	9965
0,46	3228	6772	1,21	1131	8869	1,96	0250	9750	2,71	0034	9966
0,47	3192	6808	1,22	1112	8888	1,97	0244	9756	2,72	0033	9967
0,48	3156	6844	1,23	1093	8907	1,98	0239	9761	2,73	0033	9968
0,49	3121	6879	1,24	1075	8925	1,99	0233	9767	2,74	0031	9969
0,50	3085	6915	1,25	1056	8944	2,00	0228	9772	2,75	0030	9970
0,51	3050	6950	1,26	1038	8962	2,01	0222	9778	2,76	0029	9971
0,52	3015	6985	1,27	1020	8980	2,02	0217	9783	2,77	0028	9972
0,53	2981	7019	1,28	1003	8997	2,03	0212	9788	2,78	0023	9973
0,54	2946	7054	1,29	0985	9015	2,04	0207	9793	2,79	0026	9974
0,55	2912	7088	1,30	0968	9032	2,05	0202	9798	2,80	0026	9974
0,56	2877	7123	1,31	0951	9049	2,06	0197	9803	2,81	0025	9975
0,57	2843	7157	1,32	0934	9066	2,00	0192	9808	2,82	0023	9976
0,58	2810	7190	1,33	0918	9082	2,07	0188	9812	2,83	0023	9977
0,59	2776	7224	1,33	0901	9099	2,08	0183	9817	 2,84	0023	9977
0,60	2743	7257	1,35	0885	9115	2,10	0179	9821	2,85	0023	9978
0,61	2709	7291	1,36	0869	9131	2,11	0174	9826	2,86	0021	9979
0,62	2676	7324	1,36	0869	9131	2,11	0174	9820	2,80	0021	9979
0,62	2643	7357	1,38	0838	9162	2,12	0166	9834	2,88	0021	9980
0,63	2611	7389	1,39	0823	9177	2,13	0162	9838	2,89	0019	9981
0,65	2578	7422	1,40	0808	9192	2,15	0158	9842	2,90	0019	9981
100000	2546		0.37.233	0793	9207	2,16	0154	9846	2,91	0019	9982
0,66	2514	7454	1,41	0793	9207		0154	9846	2,91	0018	9982
0,67 0,68	2483	7486 7517	1,42 1,43	07/8	9222	2,17 2,18	0150	9850 9854	2,92	0018	9982
0,68	2483	7549	1,43	0764	9250	2,18	0146	9854	2,93	0017	9983
0,70	2420	7580	1,44	0749	9251	2,19	0139	9861	2,94	0016	9984
		7611				2.55					1.00
		7D11	1,46	0721	9279	2,21	0136	9864	2,96	0015	9985
0,71	2389			0700	0202					0015	
0,71 0,72	2358	7642	1,47	0708	9292	2,22	0132	9868	2,97	0015	9985
0,71 0,72 0,73	2358 2327	7642 7673	1,47 1,48	0694	9306	2,23	0129	9871	2,98	0014	9986
0,71 0,72	2358	7642	1,47								

Erwartete Leistung				
		I	II	III
a)	Das Zufallsexperiment "Kontrolle eines Fahrgastes" kann nur zwei Ausgänge haben, denn entweder hat ein Fahrgast einen gültigen Fahrschein oder nicht. Auch wenn im Bus eine kontrollierte Person nicht noch einmal kontrolliert wird, ist die Grundgesamtheit aller Fahrgäste in Stoßzeiten so groß, dass man die Antreffwahrscheinlichkeit eines Schwarzfahrers als konstant ansehen kann. Ferner ist es wichtig, dass sich Fahrgäste unabhängig voneinander zum Schwarzfahren (mit $p=0.08$) entschließen.	2		
	Somit sind Situationen klar, in denen keine Binomialverteilung vorliegen würde: z.B.:			
	 Es entschließen sich zwei oder mehrere Personen gemeinsam schwarz zu fahren, 			
	 bei sozialen Brennpunkten könnte es aufgrund des verfügbaren Geldes zu erhöhtem Schwarzfahren kommen, 			
	 es könnte die Tageszeit einen Einfluss auf die Schwarzfahrerquote haben ("zu dieser Zeit wird bestimmt nicht mehr kontrolliert"). 			
	In allen diesen Situationen müsste man im Bus mit einem anderen p als $p = 8\%$ rechnen.		2	
b)	Die Zufallsvariable X ist binomialverteilt mit $p=0,08$. Hier liegt eine Bernoullikette der Länge 50 vor. Es gilt $P(X \ge 2) = 1 - P(X \le 1) = 1 - P(X = 0) - P(X = 1) =$	1		
	$1 - {50 \choose 0} 0.08^{0} 0.92^{50} - {50 \choose 1} 0.08^{1} 0.92^{49} \approx 1 - 0.0155 - 0.0672 = 0.9173.$	2		
	Die Normalverteilung kann als Näherung verwendet werden, wenn $\sigma > 3$ ist.	1		
	Damit gilt: $\sigma = \sqrt{n \cdot p \cdot (1-p)} > 3 \iff n \cdot p \cdot (1-p) > 9$ (wegen der Monotonie der			
	Wurzelfunktion), also $n > \frac{9}{p \cdot (1-p)}$. Mit den obigen Werten ergibt sich			
	n > $\frac{9}{0.08 \cdot 0.92}$ ≈ 122,28. Die Näherung ist ab einer Gruppengröße von 123 Fahrgästen		2	
	sinnvoll.			
	Mit Hilfe der Näherung durch die Normalverteilung erhält man :			
	$P(X \le 50) \approx \Phi\left(\frac{50 + 0.5 - 800 \cdot 0.08}{\sqrt{800 \cdot 0.08 \cdot 0.92}}\right) \approx \Phi(-1.76) = 1 - \Phi(1.76)$. Aus der Tabelle			
	entnimmt man $P(X \le 50) \approx 1 - 0.9608 = 3.92 \%$.		3	
	[Ohne Korrekturglied: $P(X \le 50) \approx 1 - \Phi(1,82) \approx 1 - 0.9656 \approx 3,44 \%$].			

c)	Zunächst einmal haben wir weiterhin eine binomialverteilte Zufallsvariable mit $p = 0.08$,
	wenn X wieder die Anzahl der Schwarzfahrer beschreibt. Die Länge der Bernoullikette
	ist hier $n = 4$. Damit ergibt sich

$$P(X \ge 1) = 1 - P(X = 0) = 1 - {4 \choose 0} 0.08^{0} \cdot 0.92^{4} = 1 - 0.92^{4} \approx 0.2836 \approx 28.4\%.$$

2

Somit hat der erste Schüler mit seiner Angabe Recht.

Wenn aber der Kurs mit 25 Personen einsteigt und zwei Personen schwarzfahren, so sind das zwar auch 8%, aber hier liegt der Fall "Ziehen ohne Zurücklegen" vor, das heißt, dass die Zufallsvariable X, die die Anzahl der Schwarzfahrer beschreibt, hypergeometrisch verteilt ist. Daher ist wie folgt zu rechnen:

1

$$P(X \ge 1) = 1 - P(X = 0) = 1 - \frac{\binom{2}{0}\binom{23}{4}}{\binom{25}{4}} = 1 - 0.7 = 0.3 = 30\%.$$

2

Damit liegt in der Tat eine höhere Wahrscheinlichkeit vor, die Mehrheit im Kurs hatte also Recht.

1

d)	Wenn man testen möchte, ob sich die Fahrkartenkaufmöglichkeit mit dem Handy für die Stadtwerke lohnt, wird man als Nullhypothese das Gegenteil von dem annehmen, was man zeigen möchte, damit man diese Annahme ggf. mit einer Irrtumswahrscheinlichkeit von 5% verwerfen kann. H_0 sei die Hypothese, dass die Maßnahme nicht den erhofften Erfolg gebracht hat, also $H_0\colon p\ge 0,06$. Die Gegenhypothese lautet dann $H_1\colon p<0,06$. Die Zufallsvariable X beschreibe die möglichen Anzahlen von Schwarzfahrern bei einer Stichprobe mit n = 2000. Man wird die Nullhypothese ablehnen, wenn man relativ wenige Schwarzfahrer bei der Stichprobe findet, also liegt hier ein linksseitiger Signifikanztest vor. Also ist unter der Annahme "H $_0$ ist wahr" die größte ganzzahlige Grenze g gesucht mit $P(X\le g)\le 0,05$ (g gehört also schon zum Ablehnungsbereich). X ist binomialverteilt mit den Parametern n = 2000 und $p=0,06$. Es kann hier die Näherung von Moivre-Laplace verwendet werden, da $n\cdot p\cdot (1-p)=2000\cdot 0,06\cdot 0,94=112.8>9$ ist. Es gilt $P(X\le g)\le 0,05 \text{ . Mit der Näherung folgt }1-\Phi\left(-\frac{g+0,5-2000\cdot 0,06}{\sqrt{112,8}}\right)\le 0,05 \text{ .}$ Somit ist $\Phi\left(-\frac{g-119.5}{\sqrt{112.8}}\right)\ge 0,95 \text{ und mittels der Tabelle der Normalverteilung und der}$ Monotonie der Φ -Funktion $-\frac{g-119.5}{\sqrt{112.8}}\ge 1,645 \text{ . Folglich ist }g\le 102,03 \text{ und daher}$ dann $g=102$. Werden nur zweistellige Tabellenwerte verwendet oder wird ohne Korrekturglied gearbeitet, so sind die Rechnungen entsprechend zu verändern. Damit ist der Ablehnungsbereich der Nullhypothese $K=[0:102]$. Wir haben daher folgende Entscheidungsregel: Werden 102 oder weniger Schwarzfahrer angetroffen, so verwerfen wir die Nullhypothese, d.h. wir werden die Maßnahme als für die Stadtwerke lohnend bewerten. Werden mindestens 103 Schwarzfahrer ertappt, so bleiben wir bei der Nullhypothese, d.h. wir sehen den Fahrkartenverkauf per Handy als nicht lohnend für die Stadtwerke an.	1 1 1	3	
e)	Die Zufallsvariable X wird als binomialverteilt mit den Parametern n und p vorausgesetzt. Ferner sei $a \in IR$ mit $0 < a < 1$ und $P(X \ge 1) \ge a$. Dann gilt: $P(X \ge 1) = 1 - P(X = 0) = 1 - \binom{n}{0} p^0 \cdot (1-p)^n = 1 - (1-p)^n \ge a \iff$			
	$1-a \ge (1-p)^n \Leftrightarrow \ln(1-a) \ge n \ln(1-p) \Leftrightarrow \frac{\ln(1-a)}{\ln(1-p)} \le n (\operatorname{da} \ln(1-p) < 0 \text{ ist}).$			3
		12	15	3