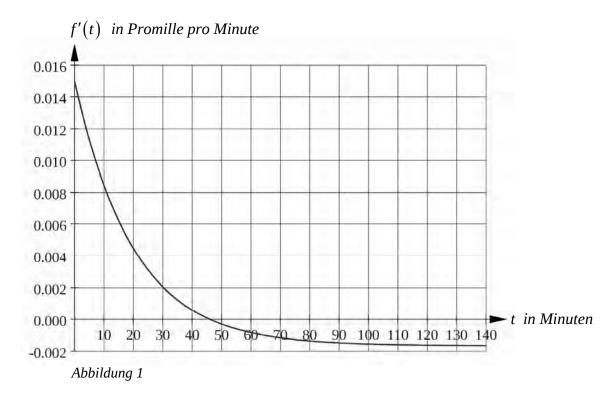


Name:				

Abiturprüfung 2012

Mathematik, Grundkurs


Aufgabenstellung:

Bei einem medizinischen Test leert eine Versuchsperson ein Glas Wein in einem Zug. Anschließend wird die zeitliche **Änderungsrate** der Blutalkoholkonzentration (in Promille pro Minute) aufgezeichnet. Diese wird im hier verwendeten Modell durch eine Funktion f' mit der Gleichung

$$f'(t) = \frac{1}{60}e^{-\frac{1}{20}t} - \frac{1}{600}$$

beschrieben. Dabei ist t die Zeit in Minuten, die seit der Alkoholaufnahme vergangen ist. (Die Funktion f' ist für alle $t \in IR$ definiert, aber nur für $0 \le t \le 140$ zur Modellierung geeignet. Beispielsweise bedeutet f'(t) = 0,01 eine zeitliche Änderungsrate der Blutalkoholkonzentration von 0,01 Promille pro Minute.)

In der *Abbildung 1* ist der Graph der Funktion f' dargestellt.

		4.0

- a) (1) Berechnen Sie f'(0), f'(140) sowie die Nullstelle der Funktion f' und ermitteln Sie das Monotonieverhalten von f'.
 - (2) Beschreiben Sie anhand des Graphen von f' den zeitlichen Verlauf der Blutalkoholkonzentration der Versuchsperson.

(12 Punkte)

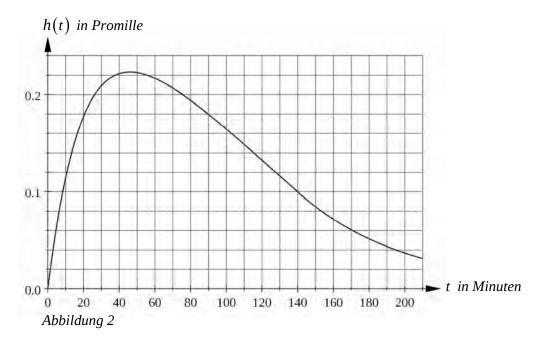
Wenn die Versuchsperson vor dem Leeren des Glases noch keinen Alkohol im Blut hatte, wird die Blutalkoholkonzentration (in Promille) im verwendeten Modell während der ersten 140 Minuten nach der Alkoholaufnahme durch eine Funktion f beschrieben.

b) (1) Ermitteln Sie eine Gleichung dieser Funktion f.

[Zur Kontrolle:
$$f(t) = -\frac{1}{3}e^{-\frac{1}{20}t} - \frac{1}{600}t + \frac{1}{3}$$
]

- (2) Ermitteln Sie die höchste Blutalkoholkonzentration der Versuchsperson nach dem Leeren des Glases.
- (3) Berechnen Sie die Blutalkoholkonzentration der Versuchsperson 140 Minuten nach dem Leeren des Glases.
- (4) Berechnen Sie $\frac{1}{140} \int_{0}^{140} f(t) dt$ und interpretieren Sie diesen Ausdruck im Sachzusammenhang.

(17 Punkte)

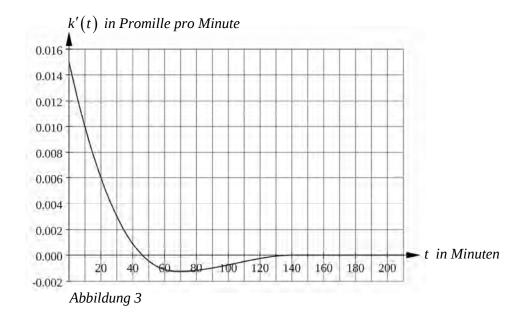

Name: _____

c) Aus biologischen Gründen wird nach 140 Minuten die Blutalkoholkonzentration der Versuchsperson durch die Funktion f nicht mehr richtig beschrieben. Für die Modellierung besser geeignet ist die an der Stelle t = 140 zusammengesetzte Funktion h mit der Gleichung

$$h(t) = \begin{cases} f(t), & 0 \le t \le 140 \\ g(t), & t > 140 \end{cases}$$

mit $g(t) = u \cdot e^{-v \cdot t}$, wobei u > 0 und v > 0 geeignet zu wählen sind (siehe *Abbildung 2*).

- (1) Bestimmen Sie die Parameter u und v so, dass die Funktion h an der Stelle t = 140 differenzierbar ist (Genauigkeit für u und v: 5 Stellen nach dem Komma).
 [Kontrollwerte mit geringerer Genauigkeit: u ≈ 1,0136, v ≈ 0,0166]
- (2) Berechnen Sie, nach wie viel Minuten in diesem Modell die Blutalkoholkonzentration erstmals unter 0,01 Promille gesunken ist.
- (3) Begründen Sie, warum die Beschreibung der Blutalkoholkonzentration durch die Funktion f nicht für beliebige Zeiten t > 140 möglich ist. Begründen Sie, warum im Gegensatz dazu die Modellierung durch die Funktion h für t > 140 sinnvoller ist.



Name: _____

(4) Beurteilen Sie, ob die in der Abbildung 3 dargestellte Funktion k' zu einer alternativen Modellierung der Änderungsrate der Blutalkoholkonzentration prinzipiell geeignet ist.

(21 Punkte)

Zugelassene Hilfsmittel:

- CAS (Computer-Algebra-System)
- Mathematische Formelsammlung
- Wörterbuch zur deutschen Rechtschreibung

Unterlagen für die Lehrkraft

Abiturprüfung 2012

Mathematik, Grundkurs

1. Aufgabenart

Analysis

2. Aufgabenstellung¹

siehe Prüfungsaufgabe

3. Materialgrundlage

entfällt

4. Bezüge zu den Vorgaben 2012

- 1. Inhaltliche Schwerpunkte
 - Untersuchung von ganzrationalen Funktionen einschließlich Funktionenscharen und Exponentialfunktionen einschließlich notwendiger Ableitungsregeln (Produkt- und Kettenregel) in Sachzusammenhängen
 - Untersuchungen von Wirkungen (Änderungsrate)
 - Flächenberechnung durch Integration
- 2. Medien/Materialien
 - entfällt

5. Zugelassene Hilfsmittel

- CAS (Computer-Algebra-System)
- Mathematische Formelsammlung
- Wörterbuch zur deutschen Rechtschreibung

Die Aufgabenstellung deckt inhaltlich alle drei Anforderungsbereiche ab.

6. Vorgaben für die Bewertung der Schülerleistungen

6.1 Modelllösungen

Modelllösung a)

(1)
$$f'(0) = 0.015$$
, $f'(140) \approx -0.00165$. $f'(t_0) = 0 \Leftrightarrow t_0 = 20 \ln(10) \approx 46.05$.

$$f''(t) = \left(\frac{1}{60}e^{-\frac{1}{20}t} - \frac{1}{600}\right)' = -\frac{1}{1200}e^{-\frac{1}{20}t} < 0$$
 für alle $t \in \mathbb{R}$. Die Funktion f' fällt

streng monoton, insbesondere im betrachteten Zeitintervall [0; 140].

(2) Die Blutalkoholkonzentration der Versuchsperson nimmt bis zum Zeitpunkt $t_0 \approx 46$ [Minuten] bei kontinuierlich abnehmender Änderungsrate zu. Anschließend nimmt sie wieder ab, bei zum Ende des betrachteten Zeitintervalls gegen ca. -0,00165 Promille pro Minute strebender Änderungsrate.

Modelllösung b)

(1) Im verwendeten Modell ist für $0 \le t \le 140\,$ die Blutalkoholkonzentration der zuvor nüchternen Versuchsperson zum Zeitpunkt t gegeben durch die Funktion f mit der Gleichung $f(t) = \int_0^t f'(u) du$.

Es gilt
$$\int_{0}^{t} f'(u) du = -\frac{1}{3} e^{-\frac{1}{20}t} - \frac{1}{600} t + \frac{1}{3}$$
.

(2) Da die Funktion f' [im betrachteten Zeitintervall] streng monoton fällt, hat ihre Stammfunktion f an der Nullstelle $t_0 = 20 \ln \left(10\right) \approx 46,05$ von f' (vgl. Teilaufgabe a) (1)) das lokale und zugleich globale Maximum $f\left(20 \ln \left(10\right)\right) = \frac{3}{10} - \frac{\ln \left(10\right)}{30} \approx 0,223$.

Die höchste Blutalkoholkonzentration der Versuchsperson [wird nach ca. 46 Minuten gemessen und] beträgt ca. 0,22 Promille.

(3)
$$f(140) = \frac{1}{10} - \frac{1}{3}e^{-7} \approx 0,100$$
.

Die Blutalkoholkonzentration der Versuchsperson beträgt 140 Minuten nach dem Leeren des Glases ca. 0,100 Promille.

(4)
$$\frac{1}{140} \int_{0}^{140} f(t) dt \approx 0.169$$
 [Promille].

Dieser Ausdruck gibt die mittlere Blutalkoholkonzentration innerhalb des betrachteten 140 Minuten langen Zeitintervalls an.

Modelllösung c)

(1)
$$h(t) = \begin{cases} f(t), & 0 \le t \le 140 \\ g(t), & t > 140 \end{cases}$$
 mit $g(t) = u \cdot e^{-v \cdot t}, u > 0, v > 0.$

Die Funktion h ist an der Stelle t = 140 genau dann differenzierbar, wenn gilt: g(140) = f(140) und g'(140) = f'(140).

Aus diesen Bedingungen folgt mit CAS: $u \approx 1,01357$ und $v \approx 0,01657$.

(2) Für den gesuchten Zeitpunkt t gilt offenbar t > 140 und daher $h(t) = g(t) = u \cdot e^{-v \cdot t}$.

Es ist
$$u \cdot e^{-v \cdot t} = 0.01 \Leftrightarrow \left[-v \cdot t = \ln \left(\frac{0.01}{u} \right) \Leftrightarrow \right] t = \frac{1}{v} \ln \left(100u \right) \approx 278.8 \text{ [bzw. } \approx 278.7$$

oder \approx 278,2 bei Verwendung von 4 oder 5 Nachkommastellen der Werte von u und v]. Nach 279 Minuten ist die Blutalkoholkonzentration erstmals unter 0,01 Promille gesunken. [Auch systematisches Probieren wird akzeptiert.]

(3) Es gilt z. B. $f(200) = -\frac{1}{3}e^{-10} < 0$. Negative Werte der Blutalkoholkonzentration können jedoch nicht existieren.

Für t > 140 gilt: h(t) = g(t). Im Gegensatz zu f(t) ist $g(t) = u \cdot e^{-v \cdot t}$ für alle t > 140 positiv und nähert sich für größer werdendes t dem Wert 0 [im Einklang mit der Tatsache, dass die Blutalkoholkonzentration nach endlicher Zeit unter die Nachweisbarkeitsgrenze sinkt].

(4) Die vom Graphen der Funktion k' und den Koordinatenachsen im 1. Quadranten berandete Fläche ist offensichtlich größer als die Fläche zwischen dem Graph von k' und der t-Achse im 4. Quadranten. Zusätzlich ist k'(t) = 0 für $t \ge 140$. Der Abbau des Alkohols wäre abgeschlossen, obwohl die Blutalkoholkonzentration noch größer ist als 0. Das steht im Widerspruch zur Realität. Die Funktion k' ist daher nicht geeignet, die Änderungsrate der Blutalkoholkonzentration zu beschreiben.

6.2 Teilleistungen – Kriterien

Teilaufgabe a)

	Anforderungen	maximal erreichbare
	Der Prüfling	Punktzahl
1	(1) berechnet $f'(0)$ und $f'(140)$.	2
2	(1) berechnet die Nullstelle der Funktion f' .	3
3	(1) ermittelt das Monotonieverhalten von f' .	3
4	(2) beschreibt anhand des Graphen von f' den zeitlichen Verlauf der Blutalkoholkonzentration der Versuchsperson.	4
	gewählte Lösungsansatz und -weg muss nicht identisch mit dem der Modelllösung sein. lich richtige Alternativen werden an dieser Stelle mit entsprechender Punktzahl bewertet.	

Teilaufgabe b)

	Anforderungen			
	Der Prüfling	Punktzahl		
1	(1) ermittelt eine Gleichung der Funktion f .	3		
2	(2) ermittelt die höchste Blutalkoholkonzentration der Versuchsperson nach dem Leeren des Glases.	6		
3	(3) berechnet die Blutalkoholkonzentration der Versuchsperson 140 Minuten nach dem Leeren des Glases.	2		
4	(4) berechnet und interpretiert den Ausdruck im Sachzusammenhang.	6		
	gewählte Lösungsansatz und -weg muss nicht identisch mit dem der Modelllösung sein. lich richtige Alternativen werden an dieser Stelle mit entsprechender Punktzahl bewertet.			

Teilaufgabe c)

	Anforderungen	maximal erreichbare Punktzahl
	Der Prüfling	Punktzani
1	(1) bestimmt u und v auf 5 Nachkommastellen genau.	5
2	(2) berechnet, nach wie viel Minuten in diesem Modell die Blutalkoholkonzentration erstmals unter 0,01 Promille gesunken ist.	3
3	(3) begründet, warum die Beschreibung der Blutalkoholkonzentration durch die Funktion f nicht für beliebige Zeiten $t > 140$ möglich ist.	4
4	(3) begründet, warum die Modellierung durch die Funktion h für $t>140$ sinnvoller ist.	5
5	(4) beurteilt, ob die Funktion k' zur Modellierung prinzipiell geeignet ist.	4
	gewählte Lösungsansatz und -weg muss nicht identisch mit dem der Modelllösung sein. lich richtige Alternativen werden an dieser Stelle mit entsprechender Punktzahl bewertet.	

Name des Prüflings:	Kursbezeichnung:
Schule:	<u> </u>
ociiuie.	

Teilaufgabe a)

	Anforderungen		Lösungs	squalität	
	Der Prüfling	maximal erreichbare Punktzahl	EK ²	ZK	DK
1	(1) berechnet $f'(0)$ und	2			
2	(1) berechnet die Nullstelle	3			
3	(1) ermittelt das Monotonieverhalten	3			
4	(2) beschreibt anhand des	4			
sachl	ich richtige Alternativen: (12)				
	Summe Teilaufgabe a)	12			

Teilaufgabe b)

	Anforderungen	Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK
1	(1) ermittelt eine Gleichung	3			
2	(2) ermittelt die höchste	6			
3	(3) berechnet die Blutalkoholkonzentration	2			
4	(4) berechnet und interpretiert	6			
sachli	ch richtige Alternativen: (17)				
	Summe Teilaufgabe b)	17			

² EK = Erstkorrektur; ZK = Zweitkorrektur; DK = Drittkorrektur

Teilaufgabe c)

	Anforderungen		Lösungs	squalität	
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK
1	(1) bestimmt u und	5			
2	(2) berechnet, nach wie	3			
3	(3) begründet, warum die	4			
4	(3) begründet, warum die	5			
5	(4) beurteilt, ob die	4			
sachl	ich richtige Alternativen: (21)				
	Summe Teilaufgabe c)	21			

Summe insgesam	t	50		

Die Festlegung der Gesamtnote der Prüfungsleistung erfolgt auf dem Bewertungsbogen einer Aufgabe aus der Aufgabengruppe 2.

Name:				

Abiturprüfung 2012

Mathematik, Grundkurs

Aufgabenstellung:

Erhöhte Ozonkonzentrationen können beim Menschen Reizungen der Atemwege, Husten, Kopfschmerzen und Atembeschwerden bis hin zu Einschränkungen der Lungenfunktion und Lungenkrankheiten hervorrufen. Ihr Ausmaß wird hauptsächlich durch die Aufenthaltsdauer in der ozonbelasteten Luft bestimmt. Befindlichkeitsstörungen wie Reizerscheinungen an Augen und Schleimhäuten werden vor allem durch Begleitstoffe des Ozons (im Sommersmog) hervorgerufen.

In einer Prognose für den kommenden Tag wird die Ozonkonzentration in einer Stadt zwischen 7 Uhr (t = 0) und 21 Uhr (t = 14) durch die Funktion f mit der Funktionsgleichung

$$f(t) = 0.06 \cdot (0.25 t^4 - 10.6 t^3 + 101.2 t^2) + 55, \ 0 \le t \le 14,$$

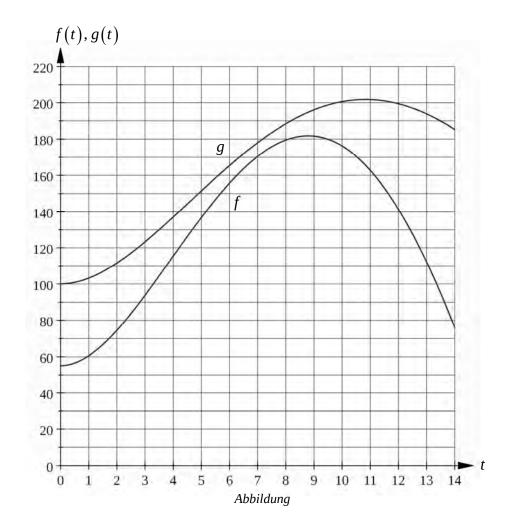
und in einer ländlichen Region für denselben Zeitraum durch die Funktion g mit der Funktionsgleichung

$$g(t) = 0.03 \cdot (0.25 t^4 - 10.75 t^3 + 116 t^2) + 100, \ 0 \le t \le 14,^{1}$$

modelliert. (t in Stunden; f(t), g(t) in $\mu g/m^3$)

Die Graphen von f und g sind in der *Abbildung* auf Seite 2 dargestellt. (t-Achse: 1 LE entspricht 1 Stunde; f(t)-, g(t)-Achse: 1 LE entspricht 1 μ g/m³)

Die Funktionen f und g sind für alle $t \in R$ definiert, werden aber nur für $0 \le t \le 14$ zur Modellierung verwendet.


Name:				

- a) (1) Vergleichen Sie die Graphen von f und g im gegebenen Sachzusammenhang.
 - (2) Geben Sie die Ozonkonzentrationen in der Stadt zu den Zeitpunkten 7 Uhr und 21 Uhr nach dem Prognosemodell an.
 - (3) Bestimmen Sie den Zeitpunkt, an dem die höchste Ozonkonzentration in der Stadt prognostiziert wird, und berechnen Sie die höchste Ozonkonzentration.

In der ländlichen Region wird während des gesamten Zeitraums eine höhere Ozonkonzentration als in der Stadt prognostiziert.

(4) Bestimmen Sie den Zeitpunkt, an dem sich die beiden Ozonkonzentrationen am wenigsten unterscheiden, und zeigen Sie, dass der Unterschied zu jedem Zeitpunkt mehr als 7 μg/m³ beträgt.

(24 Punkte)

Name: _____

- b) (1) Ermitteln Sie die Zeitpunkte, an denen die Ozonkonzentration in der Stadt am stärksten zu- und am stärksten abnimmt.
 - (2) Erklären Sie die Bedeutung des Ausdrucks $\frac{1}{8} \cdot \int_{a}^{a+8} f(t)dt$, wobei $0 \le a \le 6$ ist, im Sachzusammenhang.
 - (3) Berechnen Sie $\frac{1}{8} \cdot \int_{0}^{8} f(t) dt$.
 - (4) Begründen Sie, dass die Fortsetzung der Funktion f auf das Intervall [0; 24] zur Prognose der Ozonkonzentration nicht geeignet ist. (18 Punkte)

Ein Prognosemodell aus der Schweiz zur Berechnung der **maximalen** Ozonkonzentration des folgenden Tages lautet:

$$O_{\rm m} = 0.25 \cdot O_{\rm h} + 5.5 \cdot T_{\rm m} - 40$$
.

- $O_{\rm m}$: Maßzahl der maximalen Ozonkonzentration (in $\mu g/m^3$), die für den morgigen Tag prognostiziert wird
- O_h : Maßzahl der maximalen Ozonkonzentration (in μ g/m³) am heutigen Tag
- $T_{\rm m}$: Maßzahl der maximalen Temperatur (in °C), die für den morgigen Tag prognostiziert wird

Für den morgigen Tag wird eine Höchsttemperatur von 28 °C vorhergesagt.

- c) (1) Bestimmen Sie, für welche heutige maximale Ozonkonzentration nach dem Schweizer Modell am nächsten Tag eine Ozonkonzentration von 180 μ g/m³ vorausgesagt wird.
 - (2) Die "Ozon-Alarmschwelle" wird bei einer Konzentration von $240~\mu g/m^3$ erreicht. Heute wurde eine maximale Ozonkonzentration von $60~\mu g/m^3~$ gemessen.

Untersuchen Sie, welche Tageshöchsttemperatur für den nächsten Tag prognostiziert werden müsste, damit nach dem Schweizer Prognosemodell morgen ein Erreichen der "Alarmschwelle" möglich wäre. (8 Punkte)

Ministerium	für
Schule und	Weiterbildung
des Landes	Nordrhein-Westfalen

M GK HT 2 CAS Seite 4 von 4

Name:		
-------	--	--

Zugelassene Hilfsmittel:

- CAS (Computer-Algebra-System)Mathematische Formelsammlung
- Wörterbuch zur deutschen Rechtschreibung

Unterlagen für die Lehrkraft

Abiturprüfung 2012

Mathematik, Grundkurs

1. Aufgabenart

Analysis

2. Aufgabenstellung¹

siehe Prüfungsaufgabe

3. Materialgrundlage

entfällt

4. Bezüge zu den Vorgaben 2012

- 1. Inhaltliche Schwerpunkte
 - Untersuchung von ganzrationalen Funktionen einschließlich Funktionenscharen und Exponentialfunktionen einschließlich notwendiger Ableitungsregeln (Produkt- und Kettenregel) in Sachzusammenhängen
 - Untersuchungen von Wirkungen (Änderungsrate)
 - Flächenberechnung durch Integration
- 2. Medien/Materialien
 - entfällt

5. Zugelassene Hilfsmittel

- CAS (Computer-Algebra-System)
- Mathematische Formelsammlung
- Wörterbuch zur deutschen Rechtschreibung

Die Aufgabenstellung deckt inhaltlich alle drei Anforderungsbereiche ab.

6. Vorgaben für die Bewertung der Schülerleistungen

6.1 Modelllösungen

Modelllösung a)

(1) Gemeinsamkeiten:

Die Ozonkonzentration steigt in beiden Fällen vom Morgen an und erreicht am Nachmittag ihren höchsten Stand. Danach flacht sie zum Abend hin ab.

Unterschiede:

Die Ozonkonzentration auf dem Land liegt ständig über dem städtischen Niveau, der höchste Wert wird mehr als eine Stunde später erreicht und die Zunahme bzw. die Abnahme ist geringer als in der "Stadtkurve".

(2) Ozonkonzentration um 7 Uhr: $f(0) = 55 \mu g/m^3$

Ozonkonzentration um 21 Uhr: $f(14) = 76,16... \mu g/m^3$

(3) Ableitungen von *f*:

$$f'(t) = 0.06 \cdot (t^3 - 31.8 t^2 + 202.4 t)$$

$$f''(t) = 0.06 \cdot (3t^2 - 63.6t + 202.4)$$

Extremstellen von *f*:

Ein hinreichendes Kriterium für eine relative Extremstelle einer mehrfach differenzierbaren Funktion f lautet $f'(t) = 0 \land f''(t) \neq 0$.

$$f'(t) = 0 \Leftrightarrow 0.06 \cdot (t^3 - 31.8 t^2 + 202.4 t) = 0 \Leftrightarrow t = 0 \lor t = 8.8 \lor t = 23$$

0 und 23 liegen nicht im Inneren des Definitionsbereiches. Deswegen kommt höchstens 8,8 als relative Extremstelle infrage.

f "(8,8) < 0 – Relatives Maximum an der Stelle 8,8.

Als einzige relative Extremstelle ist das relative Maximum zugleich absolutes Maximum. 8,8 entspricht dem Zeitpunkt 15.48 Uhr.

[Alternative Lösungswege sind denkbar.]

f(8,8) = 181,75... Die höchste Ozonkonzentration beträgt ungefähr 181,75 µg/m³.

(4) Der Unterschied der Ozonkonzentrationen in Land und Stadt wird durch die Funktion h mit $h(t) = g(t) - f(t) = -0,0075 t^4 + 0,3135 t^3 - 2,592 t^2 + 45 (0 \le t \le 14)$ beschrieben.

Notwendigerweise muss an den Extremstellen differenzierbarer Funktionen h'(t) = 0 gelten.

$$h'(t) = -0.03 t^3 + 0.9405 t^2 - 5.184 t$$

Die Gleichung h'(t)=0 besitzt die Lösungen $t_1=0$, $t_2=7,136...$ bzw. $t_3=24,213...$.

Als relative Extremstelle kommt nur die (innere) Stelle t_2 in Betracht.

Da h'(7) = -0.4... < 0 und h'(8) = 3.3... > 0 gilt, besitzt h' an der Stelle t_2 einen

Vorzeichenwechsel $(-\rightarrow +)$. \Rightarrow An der Stelle t_2 besitzt h ein relatives Minimum.

Als einziges relatives Extremum einer differenzierbaren Funktion hat die Funktion h an der Stelle t_2 ein absolutes Minimum. Der gesuchte Zeitpunkt ist 14.08 Uhr. Da

$$h(t_2) = 7,48... > 7$$
 ist, folgt die Aussage.

[Alternative Lösungswege sind denkbar.]

Modelllösung b)

(1) Die Zeitpunkte, an denen die Ozonkonzentrationen am stärksten zu- bzw. abnehmen, werden über die Wende- bzw. Randstellen des Graphen von *f* ermittelt.

$$f'''(t) = 0.06 \cdot (6t - 63.6)$$

Wendestellen von *f*:

Ein hinreichendes Kriterium für eine Wendestelle einer dreimal differenzierbaren Funktion f lautet $f''(t) = 0 \land f'''(t) \neq 0$.

$$f''(t) = 0 \iff t = 3,89... \lor t = 17,30...$$

 $t = 17,30... > 14 \implies$ Die Stelle 17,30... liegt nicht im Definitionsbereich von f und spielt deswegen bei den Überlegungen keine Rolle.

 \Rightarrow Die einzig mögliche Wendestelle liegt bei $t_1 = 3,89...$

$$f'''(t_1) < 0 \Rightarrow$$
 Wendestelle bei $t_1 = 3,89...$

Vergleich der Steigungen an der Wendestelle und den Randstellen:

$$f'(0) = 0$$

 $f'(t_1) = 21,9... \Rightarrow 3,89...$ Stelle der größten Zunahme

$$f'(14) = -39,3... \Rightarrow 14$$
 Stelle der größten Abnahme

Um 10.53 Uhr (3,89... entspricht 3:53 h) nimmt die Ozonkonzentration am stärksten zu und um 21 Uhr am stärksten ab.

- (2) $\frac{1}{8} \int_{a}^{a+8} f(t) dt$ gibt die durchschnittliche Ozonkonzentration für einen 8-Stunden-Zeitraum zwischen 7 und 21 Uhr in der Stadt an.
- (3) Es gilt:

$$m = \frac{1}{8} \int_{0}^{8} f(t) dt \implies$$

$$m = \frac{1}{8} \cdot [0,06 \cdot (0,05 t^{5} - 2,65 t^{4} + \frac{101,2}{3} t^{3}) + 55 t]_{0}^{8}$$

$$= 115,416$$

$$\approx 115 \left[\mu g/m^{3} \right]$$

[Der Zwischenschritt mit Angabe einer Stammfunktion ist nicht erforderlich.]

(4) Es gilt z. B. f(24) = -262,95... Da keine negativen Ozonwerte existieren, ist eine Erweiterung des Definitionsbereiches auf das Intervall [0; 24] nicht sinnvoll.

Modelllösung c)

(1) Mit den angegebenen Werten folgt:

$$180 = 0.25 \cdot O_h + 5.5 \cdot 28 - 40 \Leftrightarrow O_h = 264$$
.

Nach dem Modell müsste heute eine höchste Ozonkonzentration von 264 μg/m³ vorliegen.

(2) Analog folgt:

$$240 = 0.25 \cdot 60 + 5.5 \cdot T_m - 40 \Leftrightarrow T_m = 48.18...$$

Damit am nächsten Tag nach dem Schweizer Prognosemodell die "Alarmschwelle" der Ozonkonzentration von 240 μg/m³ erreicht wird, müsste die prognostizierte Tageshöchsttemperatur über 48 °C [im Schatten] liegen.

6.2 Teilleistungen – Kriterien

Teilaufgabe a)

	Anforderungen	maximal erreichbare
	Der Prüfling	Punktzahl
1	(1) vergleicht die Graphen von f und g im Sachzusammenhang.	5
2	(2) gibt die Ozonkonzentrationen um 7 und um 21 Uhr nach dem Prognosemodell an.	2
3	(3) bestimmt den Zeitpunkt, an dem die höchste Ozonkonzentration prognostiziert wird, und berechnet die höchste Ozonkonzentration.	7
4	(4) bestimmt den Zeitpunkt, an dem sich die beiden Ozonkonzentrationen am wenigsten unterscheiden.	7
5	(4) zeigt, dass der Unterschied zu jedem Zeitpunkt mehr als 7 μg/m³ beträgt.	3
_	gewählte Lösungsansatz und -weg muss nicht identisch mit dem der Modelllösung sein. lich richtige Alternativen werden an dieser Stelle mit entsprechender Punktzahl bewertet.	

Teilaufgabe b)

	Anforderungen	maximal erreichbare
	Der Prüfling	Punktzahl
1	(1) bestimmt die Wendestelle von <i>f</i> .	5
2	(1) ermittelt die Zeitpunkte, an denen die Ozonkonzentration am stärksten zu- bzw. abnimmt.	4
3	(2) erklärt die Bedeutung des Ausdrucks $\frac{1}{8} \cdot \int_{a}^{a+8} f(t) dt$, $0 \le a \le 6$, im Sachzusammenhang.	4
4	(3) berechnet $\frac{1}{8} \cdot \int_{0}^{8} f(t) dt$.	2
5	(4) begründet, dass die Fortsetzung der Funktion f auf das Intervall [0; 24] zur Prognose der Ozonkonzentration nicht geeignet ist.	3
	gewählte Lösungsansatz und -weg muss nicht identisch mit dem der Modelllösung sein. lich richtige Alternativen werden an dieser Stelle mit entsprechender Punktzahl bewertet.	

Teilaufgabe c)

	Anforderungen	
	Der Prüfling	Punktzahl
1	(1) bestimmt, für welche heutige Ozonkonzentration nach dem Schweizer Modell am nächsten Tag eine Ozonkonzentration von 180 $\mu g/m^3$ vorausgesagt wird.	4
2	(2) untersucht, welche Tageshöchsttemperatur für den nächsten Tag prognostiziert werden müsste, damit nach dem Schweizer Prognosemodell morgen ein Erreichen der "Alarmschwelle" möglich wäre.	4
_	gewählte Lösungsansatz und -weg muss nicht identisch mit dem der Modelllösung sein. lich richtige Alternativen werden an dieser Stelle mit entsprechender Punktzahl bewertet.	

7.	Bewertungsbogen	zur Prüfung	sarbeit

Name des Prüflings:	Kursbezeichnung:
Schule:	

Teilaufgabe a)

	Anforderungen		Lösungs	squalität	
	Der Prüfling	maximal erreichbare Punktzahl	EK ²	ZK	DK
1	(1) vergleicht die Graphen	5			
2	(2) gibt die Ozonkonzentrationen	2			
3	(3) bestimmt den Zeitpunkt	7			
4	(4) bestimmt den Zeitpunkt	7			
5	(4) zeigt, dass der	3			
sachl	ich richtige Alternativen: (24)				
	Summe Teilaufgabe a)	24			

Teilaufgabe b)

	Anforderungen Lösungsqualitä		squalität		
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK
1	(1) bestimmt die Wendestelle	5			
2	(1) ermittelt die Zeitpunkte	4			
3	(2) erklärt die Bedeutung	4			
4	(3) berechnet $\frac{1}{8} \cdot \int_{0}^{8} f(t) dt$.	2			
5	(4) begründet, dass die	3			
sachl	ch richtige Alternativen: (18)				
	Summe Teilaufgabe b)	18			

² EK = Erstkorrektur; ZK = Zweitkorrektur; DK = Drittkorrektur

Teilaufgabe c)

	Anforderungen	Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK
1	(1) bestimmt, für welche	4			
2	(2) untersucht, welche Tageshöchsttemperatur	4			
sachl	ich richtige Alternativen: (8)				
	Summe Teilaufgabe c)	8			

Summe insgesamt	50		

Die Festlegung der Gesamtnote der Prüfungsleistung erfolgt auf dem Bewertungsbogen einer Aufgabe aus der Aufgabengruppe 2.

Name:	
-------	--

Abiturprüfung 2012

Mathematik, Grundkurs

Aufgabenstellung:

Bei der Kunstausstellung "Licht und Schatten" ist in der Mitte der Ausstellungshalle eine gerade, 1 m hohe Pyramide mit quadratischer Grundfläche von 1 m Seitenlänge ausgestellt. Die Grundfläche der Pyramide befindet sich (gehalten von vier Stützen) einen Meter über dem Boden der Halle. Die quaderförmige Halle selbst ist 5 m hoch und hat eine quadratische Grundfläche von 9 m Seitenlänge.

In einem kartesischen Koordinatensystem mit Ursprung in einer Hallenecke und entlang der Hallenkanten verlaufenden Koordinatenachsen hat die Grundfläche der Pyramide die Eckpunkte A(5|4|1), B(5|5|1), C(4|5|1) und D(4|4|1).

Die Gegebenheiten sind in der Abbildung 1 auf Seite 3 dargestellt.

- a) (1) Zeigen Sie, dass die Pyramidenspitze die Koordinaten S(4,5|4,5|2) hat.
 - (2) Berechnen Sie die Seitenlängen des Dreiecks ABS.
 - (3) Bestimmen Sie das Volumen und den Oberflächeninhalt der Pyramide.

(14 Punkte)

b) Die Pyramide wird von einer an der rechten Hallenwand in der Position L(4,5|9|1) befestigten punktförmigen Lichtquelle angestrahlt (siehe *Abbildung 1*). Der Pyramidenschatten auf der gegenüberliegenden Hallenwand (y=0) hat die Form eines Dreiecks.

Ermitteln Sie die Koordinaten der Eckpunkte dieses Schattendreiecks. Zeigen Sie, dass es sich um ein gleichschenkliges Dreieck handelt, und berechnen Sie seinen Flächeninhalt.

(12 Punkte)

2
M()

Nachts werden die Kunstwerke in der Halle durch Laser-Lichtschranken gesichert.

- c) Einer der Laserstrahlen ist auf den Punkt M(4,75|4,5|1,5) des Dreiecks *ABS* gerichtet.
 - (1) Zeigen Sie, dass M der Mittelpunkt der Seitenhalbierenden der Dreiecksseite \overline{AB} ist.
 - (2) Der Laserstrahl trifft im Punkt *M* orthogonal auf die Seitenfläche *ABS* der Pyramide.

Zeigen Sie, dass der Laserstrahl in Richtung des Vektors
$$\vec{l} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$
 verläuft, und

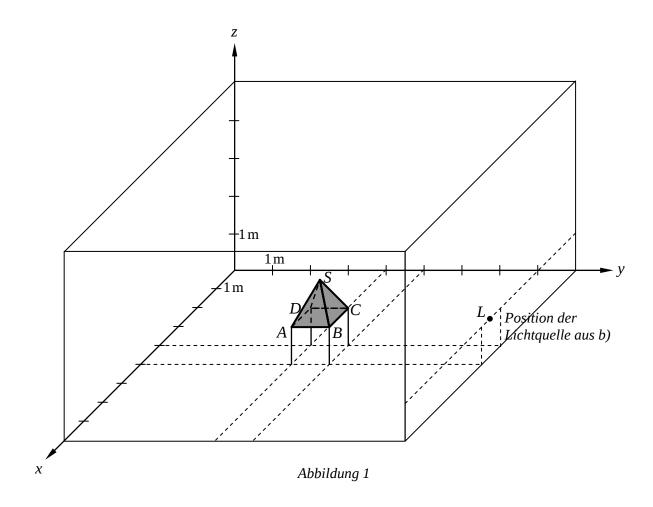
ermitteln Sie die Koordinaten der Position der Laser-Lichtquelle an der Wand der Halle.

(16 Punkte)

d) Eine weitere Laser-Lichtquelle ist so installiert, dass der von ihr ausgehende rotierende Laserstrahl den innerhalb der Halle liegenden Bereich der Ebene

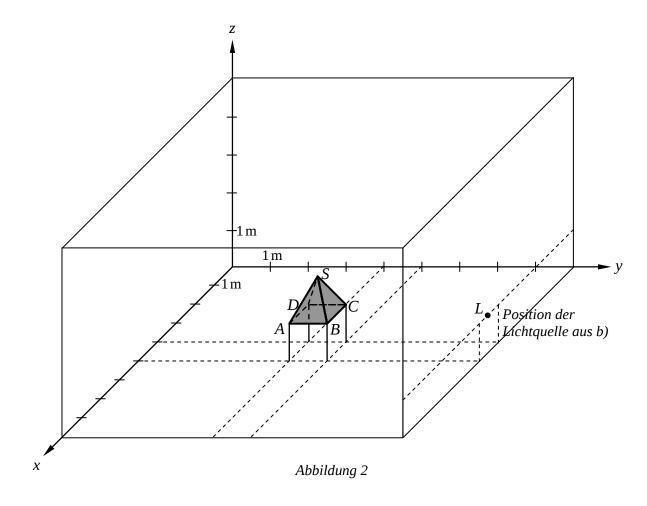
$$E^*: \vec{x} = \begin{pmatrix} 3 \\ 0 \\ 5 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}, r, s \in \mathbb{R},$$

überstreicht. Der Laserstrahl trifft unter anderem die Punkte F(3|0|5) und G(3|9|5).


- (1) Zeichnen Sie in die Abbildung 2 auf Seite 4 die Spur des rotierenden Laserstrahls auf Wänden, Boden und Decke der Halle ein, d. h. alle Punkte der Wände, des Bodens und der Decke der Halle, die zur Ebene E* gehören.
- (2) Die Ebene E^* und die Ebene E_{BCS} : 2y + z = 11, in der die Seitenfläche BCS der Pyramide liegt, schneiden sich in einer Schnittgeraden g.

Entscheiden Sie, ob die Pyramidenkante \overline{BS} auf dieser Schnittgeraden g liegt.

(8 Punkte)


Name: _____

Name:

Für die Zeichnung in Teilaufgabe d) (1):

Zugelassene Hilfsmittel:

- CAS (Computer-Algebra-System)
- Mathematische Formelsammlung
- Wörterbuch zur deutschen Rechtschreibung

Unterlagen für die Lehrkraft

Abiturprüfung 2012

Mathematik, Grundkurs

1. Aufgabenart

Lineare Algebra/Geometrie ohne Alternative

2. Aufgabenstellung¹

siehe Prüfungsaufgabe

3. Materialgrundlage

entfällt

4. Bezüge zu den Vorgaben 2012

- 1. Inhaltliche Schwerpunkte
 - Lineare Gleichungssysteme für n > 2, Matrix-Vektor-Schreibweise, systematisches Lösungsverfahren für lineare Gleichungssysteme
 - Geraden- und Ebenengleichungen in Parameterform und Koordinatenform, Lagebeziehung von Geraden und Ebenen
 - Standard-Skalarprodukt mit den Anwendungen Orthogonalität und Länge von Vektoren
- 2. Medien/Materialien
 - entfällt

5. Zugelassene Hilfsmittel

- CAS (Computer-Algebra-System)
- Mathematische Formelsammlung
- Wörterbuch zur deutschen Rechtschreibung

Die Aufgabenstellung deckt inhaltlich alle drei Anforderungsbereiche ab.

6. Vorgaben für die Bewertung der Schülerleistungen

6.1 Modelllösungen

Modelllösung a)

- (1) Da es sich um eine gerade Pyramide mit zur x-y-Ebene parallelen Grundfläche handelt, stimmen die x- und y-Koordinaten der Pyramidenspitze S mit denen des Mittelpunkts M(4,5|4,5|1) ihrer quadratischen Grundfläche ABCD überein. Zur z-Koordinate von M ist die Höhe der Pyramide zu addieren, so dass sich S(4,5|4,5|2) ergibt.
- (2) $|\overline{AB}| = 1$ m wie vorausgesetzt.

 Das Dreieck *ABS* ist gleichschenklig mit $|\overline{AS}| = |\overline{BS}| = \sqrt{0,5^2 + 0,5^2 + 1^2}$ m $\approx 1,22$ m.
- (3) Das Volumen der Pyramide beträgt $V = \frac{1}{3} \cdot G \cdot h = \frac{1}{3} \cdot 1 \cdot 1 \text{ m}^3 = \frac{1}{3} \text{ m}^3$. Ihre Oberfläche besteht aus der 1 m^2 großen Grundfläche und der Mantelfläche. Die Mantelfläche besteht aus vier [kongruenten] Dreiecken mit der Grundseitenlänge 1 m und der Höhe $h = \sqrt{1^2 + 0.5^2} \text{ m} = \sqrt{1.25} \text{ m}$. Der Inhalt jeder Dreiecksfläche beträgt somit $A = \frac{1}{2} \cdot 1 \cdot \sqrt{1.25} \text{ m}^2$. Der Oberflächeninhalt der Pyramide ist

$$O = 1 \text{ m}^2 + 4 \cdot \frac{1}{2} \cdot 1 \cdot \sqrt{1,25} \text{ m}^2 \approx 3,24 \text{ m}^2.$$

Modelllösung b)

Die Lichtquelle befindet sich im Punkt L(4,5|9|1).

Offenbar wird nur die Pyramidenfläche BCS von den Lichtstrahlen getroffen. Daher sind die Schnittpunkte B', C' und S' der Geraden LB, LC und LS mit der x-z-Ebene (y = 0) die Eckpunkte des Schattendreiecks B'C'S':

$$LB: \vec{x} = \begin{pmatrix} 4,5 \\ 9 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} 0,5 \\ -4 \\ 0 \end{pmatrix} \text{ schneidet für } t = \frac{9}{4} \text{ die } x\text{-z-Ebene in } B'(5,625 \mid 0 \mid 1).$$

$$LC: \vec{x} = \begin{pmatrix} 4,5 \\ 9 \\ 1 \end{pmatrix} + u \cdot \begin{pmatrix} -0,5 \\ -4 \\ 0 \end{pmatrix} \text{ schneidet für } u = \frac{9}{4} \text{ die } x\text{-z-Ebene in } C'(3,375 \mid 0 \mid 1).$$

$$LS: \vec{x} = \begin{pmatrix} 4,5 \\ 9 \\ 1 \end{pmatrix} + v \cdot \begin{pmatrix} 0 \\ -4,5 \\ 1 \end{pmatrix} \text{ schneidet für } v = 2 \text{ die } x\text{-z-Ebene in } S'(4,5 \mid 0 \mid 3).$$

Das Dreieck B'C'S' ist wegen $|\overline{B'S'}| = \sqrt{1,125^2 + 2^2}$ m = $|\overline{C'S'}|$ gleichschenklig. Es hat die Grundseitenlänge $|\overline{B'C'}| = 2,25$ m und die Höhe 2 m. Sein Flächeninhalt beträgt daher 2,25 m².

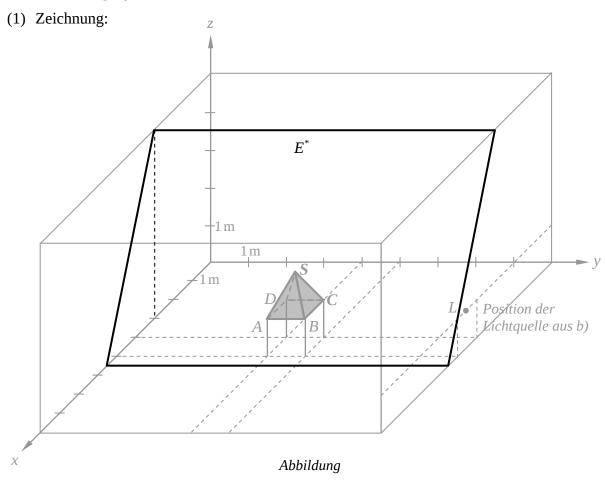
Modelllösung c)

(1) Die Seitenhalbierende der Dreiecksseite \overline{AB} ist die Strecke \overline{SM}_{AB} , wobei $M_{AB}(5|4,5|1)$ der Mittelpunkt von \overline{AB} ist. Der Mittelpunkt der Strecke \overline{SM}_{AB} ist $M\left(\frac{4,5+5}{2}\left|\frac{4,5+4,5}{2}\right|\frac{2+1}{2}\right) = M(4,75|4,5|1,5)$. Damit ist gezeigt, dass M

Mittelpunkt der Seitenhalbierenden der Dreiecksseite \overline{AB} ist.

(2) Der Vektor
$$\vec{v} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$
 ist wegen $\vec{v} \cdot \overrightarrow{AB} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 0$ und $\vec{v} \cdot \overrightarrow{AS} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} -0.5 \\ -0.5 \\ 1 \end{pmatrix} = 0$

orthogonal zu den beiden Seitenvektoren \overrightarrow{AB} und \overrightarrow{AS} und somit orthogonal zur Dreiecksfläche \overrightarrow{ABS} . Daher verläuft der Laserstrahl in Richtung des Vektors \vec{v} .


Der Laserstrahl verläuft entlang der Geraden
$$l: \vec{x} = \begin{pmatrix} 4,75 \\ 4,5 \\ 1,5 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$
 parallel zur

x-z-Ebene. Offenbar befindet sich die gesuchte Position P der Laser-Lichtquelle an der vorderen Hallenwand (vgl. Abbildung). Daher gilt für die x-Koordinate von P: $x_P = 9$.

Aus
$$\vec{x}_P = \begin{pmatrix} 9 \\ y_P \\ z_P \end{pmatrix} = \begin{pmatrix} 4,75 \\ 4,5 \\ 1,5 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$
 ergibt sich $r = 2,125$ und $z_P = 3,625$.

P(9|4,5|3,625) ist die gesuchte Position der Laser-Lichtquelle an der Wand der Halle.

Modelllösung d)

(2) Die Ebenengleichung von E^* liefert für $(r_B; s_B) = (5; 2)$ den Ortsvektor des Punktes B, für $(r_S; s_S) = (4,5;1,5)$ den Ortsvektor des Punktes S. Daher liegen die Punkte B und S und mit ihnen auch die Strecke \overline{BS} sowohl [per definitionem] in der Ebene E_{BCS} als auch in der Ebene E^* und somit auf der Schnittgeraden g von E^* und E_{BCS} . [Alternativ kann auch zuerst eine Gleichung der Schnittgeraden g berechnet werden.]

6.2 Teilleistungen – Kriterien

Teilaufgabe a)

	Anforderungen	maximal erreichbare	
	Der Prüfling	Punktzahl	
1	(1) zeigt, dass die Pyramidenspitze die Koordinaten $S(4,5 4,5 2)$ hat.	4	
2	(2) berechnet die Seitenlängen des Dreiecks <i>ABS</i> .	4	
3	(3) bestimmt das Volumen und den Oberflächeninhalt der Pyramide.	6	
Der gewählte Lösungsansatz und -weg muss nicht identisch mit dem der Modelllösung sein. Sachlich richtige Alternativen werden an dieser Stelle mit entsprechender Punktzahl bewertet.			

Teilaufgabe b)

	Anforderungen			
	Der Prüfling	Punktzahl		
1	ermittelt die Koordinaten der Eckpunkte des Schattendreiecks.	6		
2	zeigt, dass es sich um ein gleichschenkliges Dreieck handelt.	3		
3	berechnet seinen Flächeninhalt.	3		
	gewählte Lösungsansatz und -weg muss nicht identisch mit dem der Modelllösung sein. lich richtige Alternativen werden an dieser Stelle mit entsprechender Punktzahl bewertet.			

Teilaufgabe c)

	Anforderungen	maximal erreichbare
	Der Prüfling	Punktzahl
1	(1) zeigt, dass M der Mittelpunkt der Seitenhalbierenden der Dreiecksseite \overline{AB} ist.	6
2	(2) zeigt, dass der Laserstrahl in Richtung des Vektors \vec{l} verläuft.	4
3	(2) ermittelt die Koordinaten der Position der Laser-Lichtquelle an der Wand der Halle.	6
Der gewählte Lösungsansatz und -weg muss nicht identisch mit dem der Modelllösung sein. Sachlich richtige Alternativen werden an dieser Stelle mit entsprechender Punktzahl bewertet.		

Teilaufgabe d)

	Anforderungen	maximal erreichbare Punktzahl
	Der Prüfling	Punktzani
1	(1) zeichnet die Spur des rotierenden Laserstrahls in die Abbildung ein.	4
2	(2) entscheidet, ob die Pyramidenkante \overline{BS} auf der Schnittgeraden g liegt.	4
Der gewählte Lösungsansatz und -weg muss nicht identisch mit dem der Modelllösung sein. Sachlich richtige Alternativen werden an dieser Stelle mit entsprechender Punktzahl bewertet.		

7.	Bewertungsbogen zur Prüfungsarbeit	
Name	e des Prüflings:	Kursbezeichnung:
Schul	e:	

Teilaufgabe a)

7.

	Anforderungen Lösungsqualität				
	Der Prüfling	maximal erreichbare Punktzahl	EK ²	ZK	DK
1	(1) zeigt, dass die	4			
2	(2) berechnet die Seitenlängen	4			
3	(3) bestimmt das Volumen	6			
sachlich richtige Alternativen: (14)					
	Summe Teilaufgabe a)	14			

Teilaufgabe b)

Anforderungen			Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK	
1	ermittelt die Koordinaten	6				
2	zeigt, dass es	3				
3	berechnet seinen Flächeninhalt.	3				
sachlich richtige Alternativen: (12)						
	Summe Teilaufgabe b)	12				

EK = Erstkorrektur; ZK = Zweitkorrektur; DK = Drittkorrektur

Teilaufgabe c)

	Anforderungen	Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK
1	(1) zeigt, dass $M \dots$	6			
2	(2) zeigt, dass der	4			
3	(2) ermittelt die Koordinaten	6			
sachlich richtige Alternativen: (16)					
	Summe Teilaufgabe c)	16			

Teilaufgabe d)

	Anforderungen	Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK
1	(1) zeichnet die Spur	4			
2	(2) entscheidet, ob die	4			
sachlich richtige Alternativen: (8)					
	Summe Teilaufgabe d)	8			

Festlegung der Gesamtnote (Bitte nur bei der letzten bearbeiteten Aufgabe ausfüllen.)

	Lösungsqualität			
	maximal erreichbare Punktzahl	EK	ZK	DK
Übertrag der Punktsumme aus der ersten bearbeiteten Aufgabe				
Übertrag der Punktsumme aus der zweiten bearbeiteten Aufgabe				
Punktzahl der gesamten Prüfungsleistung				
aus der Punktsumme resultierende Note				
Note ggf. unter Absenkung um ein bis zwei Notenpunkte gemäß § 13 Abs. 2 APO-GOSt				
Paraphe				

ggf. arithmetisches Mittel der Punktsummen aus EK und ZK:	_	
ggf. arithmetisches Mittel der Notenurteile aus EK und ZK:	_	
Die Klausur wird abschließend mit der Note:	_ (Punkte) bewertet.
Unterschrift, Datum		

Grundsätze für die Bewertung (Notenfindung)

Für die Zuordnung der Notenstufen zu den Punktzahlen ist folgende Tabelle zu verwenden:

Note	Punkte	Erreichte Punktzahl
sehr gut plus	15	100 – 95
sehr gut	14	94 – 90
sehr gut minus	13	89 – 85
gut plus	12	84 – 80
gut	11	79 – 75
gut minus	10	74 – 70
befriedigend plus	9	69 – 65
befriedigend	8	64 – 60
befriedigend minus	7	59 – 55
ausreichend plus	6	54 – 50
ausreichend	5	49 – 45
ausreichend minus	4	44 – 39
mangelhaft plus	3	38 – 33
mangelhaft	2	32 – 27
mangelhaft minus	1	26 – 20
ungenügend	0	19 – 0

Abiturprüfung 2012

Mathematik, Grundkurs

Aufgabenstellung:

Ein Reisebüro pflegt eine Datei mit Adressen von 4400 langjährigen Stammkunden, die ihren Urlaub über dieses Reisebüro buchen. Zum Ende eines jeden Jahres untersucht die Geschäftsleitung das Buchungsverhalten der Kunden im Hinblick auf die Anzahl der Urlaube, die die Kunden im abgelaufenen Jahr bei dem Reisebüro gebucht haben.

Dabei wird unterschieden zwischen den Kunden, die im abgelaufenen Jahr genau einen Urlaub bei dem Reisebüro gebucht haben (Kundengruppe E), Kunden, die im abgelaufenen Jahr mehr als einen Urlaub bei dem Reisebüro gebucht haben (Kundengruppe M), und Kunden, die im abgelaufenen Jahr keinen Urlaub bei dem Reisebüro gebucht haben (Kundengruppe K).

Vereinfachend wird davon ausgegangen, dass sich die Stammkundschaft mit der Zeit nicht ändert.

- a) Die Geschäftsleitung hat festgestellt, dass das Buchungsverhalten der Stammkunden während eines Jahres vom Buchungsverhalten im vorangegangenen Jahr abhängt. So wurde in früheren Jahren von folgendem Buchungsverhalten der Stammkunden bei dem Reisebüro ausgegangen:
 - Von den Kunden der Gruppe E eines Jahres buchen im folgenden Jahr 75 % ebenfalls genau einen Urlaub; 10 % der Gruppe buchen mehr als einen Urlaub und 15 % keinen Urlaub.
 - Von den Kunden, die in einem Jahr mehr als einen Urlaub gebucht haben, buchen 60 % im Folgejahr ebenfalls mehr als einen Urlaub, 20 % buchen genau einen Urlaub und 20 % buchen keinen Urlaub.
 - 57 % der Kunden der Gruppe K buchen bei dem Reisebüro im nächsten Jahr genau einen Urlaub, 28 % sogar mehr als einen Urlaub, während 15 % auch im Folgejahr keinen Urlaub bei dem Reisebüro buchen.

Stellen Sie dieses Buchungsverhalten durch ein Übergangsdiagramm dar und bestimmen Sie eine Übergangsmatrix, die dieses Verhalten beschreibt.

(12 Punkte)

Name:	
-------	--

b) Aufgrund einer Änderung des Urlaubsverhaltens gilt aktuell die folgende Übergangsmatrix *A*:

	von:	\boldsymbol{E}	M	K
nach: E	-	0,8	0,2	0,6
M	A =	0,1	0,6	0,6 0,3 0,1
K		0,1	0,2	0,1

(1) Geben Sie drei Änderungen im Buchungsverhalten an, die gegenüber den früheren Jahren erkennbar sind.

Im Jahr 2011 buchten 2624 Kunden genau einen Urlaub, 1206 Kunden buchten mehr als einen Urlaub, während 570 Kunden keine Buchung bei dem Reisebüro durchführten.

- (2) Bestimmen Sie unter den Übergangsbedingungen, die durch die Matrix A gegeben sind, die zu erwartenden Verteilungen für das Jahr 2013 und für das Jahr 2017. Beurteilen Sie die Relevanz der Ergebnisse für das Jahr 2017 im Sachzusammenhang mit Hilfe von zwei Aspekten.
- (3) Bestimmen Sie unter den Übergangsbedingungen, die durch die Matrix **A** gegeben sind, die Verteilung für das Jahr 2009.

 Begründen Sie, dass das Buchungsverhalten frühestens vom Jahr 2009 an mit Hilfe der angegeben Matrix **A** beschrieben werden kann.

 (18 Punkte)

c) Die Geschäftsleitung strebt aus Gründen der Planungssicherheit an, dass die Anzahl der Kunden der einzelnen Gruppen E, M und K von Jahr zu Jahr gleich bleibt.

Zeigen Sie durch Berechnung, dass es bei dem durch die Matrix A beschriebenen Buchungsverhalten eine Verteilung der Kunden des Reisebüros auf die Gruppen E, M und K so gibt, dass die Anzahl der Kunden der einzelnen Gruppen E, M und K von Jahr zu Jahr gleich bleibt.

(9 Punkte)

Name:		
ivailie.		

- d) Durch gezielte Werbemaßnahmen wird während des Jahres 2012 das Buchungsverhalten der Kunden der Gruppe K so beeinflusst, dass von diesem Jahr an jeweils gegenüber dem vorangegangenen Jahr nur noch 5 % der Kunden der Gruppe K keinen Urlaub buchen. Dabei wird das Buchungsverhalten der Kunden der beiden anderen Kundengruppen E und M nicht beeinflusst. Es wird weiterhin von einer konstanten Anzahl von Stammkunden ausgegangen.
 - (1) Erklären Sie, dass das Buchungsverhalten dann durch eine Matrix

$$\boldsymbol{B} = \begin{pmatrix} 0.8 & 0.2 & q \\ 0.1 & 0.6 & 0.95 - q \\ 0.1 & 0.2 & 0.05 \end{pmatrix} \text{ mit } 0 \le q \le 0.95 \text{ beschrieben werden kann.}$$

(2) Gehen Sie von den in Teilaufgabe b) für das Jahr 2011 angegebenen Buchungen aus und ermitteln Sie den Wert von q für den Fall, dass sich am Ende des Jahres 2013 herausstellt, dass 2790 Kunden im Jahr 2013 genau einen Urlaub gebucht haben.

(11 Punkte)

Zugelassene Hilfsmittel:

- CAS (Computer-Algebra-System)
- Mathematische Formelsammlung
- Wörterbuch zur deutschen Rechtschreibung

Unterlagen für die Lehrkraft

Abiturprüfung 2012

Mathematik, Grundkurs

1. Aufgabenart

Lineare Algebra/Geometrie mit Alternative 2 (Übergangsmatrizen)

2. Aufgabenstellung¹

siehe Prüfungsaufgabe

3. Materialgrundlage

entfällt

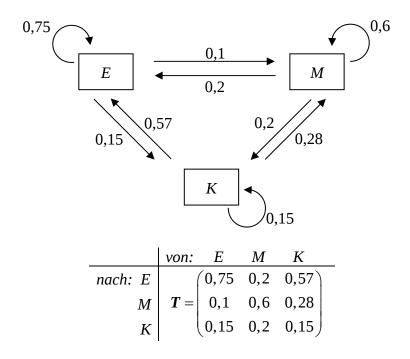
4. Bezüge zu den Vorgaben 2012

- 1. Inhaltliche Schwerpunkte
 - Lineare Gleichungssysteme für *n* > 2, Matrix-Vektor-Schreibweise, systematisches Lösungsverfahren für lineare Gleichungssysteme

Alternative 2.

- Übergangsmatrizen, Matrizenmultiplikation als Verkettung von Übergängen
- 2. Medien/Materialien
 - entfällt

5. Zugelassene Hilfsmittel


- CAS (Computer-Algebra-System)
- Mathematische Formelsammlung
- Wörterbuch zur deutschen Rechtschreibung

Die Aufgabenstellung deckt inhaltlich alle drei Anforderungsbereiche ab.

6. Vorgaben für die Bewertung der Schülerleistungen

6.1 Modelllösungen

Modelllösung a)

Modelllösung b)

- (1) Als Änderungen können angegeben werden:
 - Kunden, die in einem Jahr genau einen Urlaub gebucht haben, buchen im Folgejahr häufiger als früher auch nur einen Urlaub.
 - Kunden, die in einem Jahr nur einen Urlaub gebucht haben, pausieren im Folgejahr seltener als früher.
 - Kunden, die in einem Jahr pausiert haben, buchen im Folgejahr häufiger als früher genau einen Urlaub.
 - Kunden, die in einem Jahr pausiert haben, buchen im Folgejahr häufiger als früher zwei oder mehr Urlaube.
 - Kunden, die in einem Jahr pausiert haben, pausieren im Folgejahr seltener als früher. [Auch kurz gefasste Antworten wie z. B. "Übergang von E nach E zugenommen" werden als richtig akzeptiert. Es genügen drei der aufgeführten Änderungen. Quantifizierungen sind nicht erforderlich.]

$$(2) \begin{pmatrix} 0.8 & 0.2 & 0.6 \\ 0.1 & 0.6 & 0.3 \\ 0.1 & 0.2 & 0.1 \end{pmatrix}^{2} \cdot \begin{pmatrix} 2624 \\ 1206 \\ 570 \end{pmatrix} = \begin{pmatrix} 2713,68 \\ 1130,62 \\ 555,7 \end{pmatrix}, \begin{pmatrix} 0.8 & 0.2 & 0.6 \\ 0.1 & 0.6 & 0.3 \\ 0.1 & 0.2 & 0.1 \end{pmatrix}^{6} \cdot \begin{pmatrix} 2624 \\ 1206 \\ 570 \end{pmatrix} \approx \begin{pmatrix} 2746,97 \\ 1102,55 \\ 550,47 \end{pmatrix}$$

Für das Jahr 2013 wird erwartet, dass etwa 2714 Kunden genau einen Urlaub und etwa 1130 Kunden mehr als einen Urlaub buchen; für die restlichen etwa 556 Kunden wird erwartet, dass sie pausieren. Für das Jahr 2017 wird erwartet, dass etwa 2747 Kunden genau einen Urlaub und etwa 1103 Kunden mehr als einen Urlaub buchen; für die restlichen etwa 550 Kunden wird erwartet, dass sie pausieren.

[Hier sind auch andere sinnvolle Rundungen akzeptabel.]

Die Relevanz der Ergebnisse für das Jahr 2017 wird u. a. unter folgenden Aspekten eingeschränkt, die teilweise zusammenhängen:

- Das Übergangsverhalten wird für einen Zeitraum von mindestens 6 Jahren als unverändert unterstellt.
- Die Stammkundschaft wird für einen Zeitraum von mindestens 6 Jahren als unverändert unterstellt.
- Kostenaspekte des Reisebüros, z. B. hinsichtlich der Vermittlung von Reisen, werden langfristig ausgeblendet.
- Ökonomische Aspekte auf Seiten der Kunden, z. B. reale Einkommensverluste, werden langfristig ausgeblendet.

[Weitere Aspekte können angeführt werden.]

(3) Die Gleichung
$$\begin{pmatrix} 0.8 & 0.2 & 0.6 \\ 0.1 & 0.6 & 0.3 \\ 0.1 & 0.2 & 0.1 \end{pmatrix}^2 \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2624 \\ 1206 \\ 570 \end{pmatrix}$$
 ist zu lösen. Dabei bezeichnet x die

Anzahl der Kunden, die im Jahr 2009 genau einen Urlaub gebucht haben, *y* die Anzahl der Kunden, die im Jahr 2009 mehr als einen Urlaub buchten, und *z* die Anzahl der Kunden, die im Jahr 2009 keinen Urlaub buchten.

Durch Multiplikation der Gleichung mit der Matrix
$$\begin{pmatrix} 0,8 & 0,2 & 0,6 \\ 0,1 & 0,6 & 0,3 \\ 0,1 & 0,2 & 0,1 \end{pmatrix}^{-2}$$
 erhält man als

Lösung des linearen Gleichungssystems: x = 2200, y = 1400, z = 800.

Im Jahr 2009 buchten 2200 Kunden genau einen Urlaub, 1400 Kunden mehr als einen Urlaub, während 800 Kunden gar keinen Urlaub buchten.

Geht man davon aus, dass die Matrix *A* auch das Buchungsverhalten für das Jahr 2008 beschreibt, so ergeben sich für das Jahr 2008 folgende Buchungswerte:

$$\vec{x} = \begin{pmatrix} 0.8 & 0.2 & 0.6 \\ 0.1 & 0.6 & 0.3 \\ 0.1 & 0.2 & 0.1 \end{pmatrix}^{-3} \cdot \begin{pmatrix} 2624 \\ 1206 \\ 570 \end{pmatrix} = \begin{pmatrix} 5000 \\ 3600 \\ -4200 \end{pmatrix}.$$

Die Werte 5000 und −4200 sind jedoch nicht möglich, da die Buchungszahlen für jede Kundengruppe zwischen 0 und 4400 liegen. Daher kann das Buchungsverhalten frühestens vom Jahr 2009 an mit Hilfe der angegeben Matrix *A* beschrieben werden.

Modelllösung c)

Bezeichnet *x* für ein bestimmtes Jahr die Anzahl der Kunden, die in dem Jahr genau eine Reise buchen, *y* die Anzahl der Kunden, die in dem Jahr mehr als eine Reise buchen, und *z* die Anzahl der Kunden, die in dem Jahr keine Reise buchen, so ist das lineare Gleichungssystem

$$0.8 x + 0.2 y + 0.6 z = x$$

 $0.1 x + 0.6 y + 0.3 z = y$
 $x + y + z = 4400$

zu lösen bzw. der Fixvektor $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ zur Matrix \boldsymbol{A} unter der Nebenbedingung x + y + z = 4400

zu bestimmen.

Als Lösung ergibt sich: x = 2750, y = 1100, z = 550.

Die Anzahl der Kunden der einzelnen Gruppen E, M und K bleibt von Jahr zu Jahr gleich, wenn in einem Jahr 2750 Kunden genau einen Urlaub, 1100 Kunden mehr als einen Urlaub und 550 Kunden gar keinen Urlaub buchen.

Modelllösung d)

(1) Die Matrix
$$\mathbf{B} = (b_{ij}) = \begin{pmatrix} 0.8 & 0.2 & q \\ 0.1 & 0.6 & 0.95 - q \\ 0.1 & 0.2 & 0.05 \end{pmatrix}$$
 mit $0 \le q \le 0.95$ unterscheidet sich von

der Matrix
$$\mathbf{A} = \begin{pmatrix} 0.8 & 0.2 & 0.6 \\ 0.1 & 0.6 & 0.3 \\ 0.1 & 0.2 & 0.1 \end{pmatrix}$$
 im Element b_{33} und in mindestens einem der

Elemente $b_{13} = q$ und $b_{23} = 0.95 - q$.

Das Element $b_{33}=0,05$ gibt an, dass (nur noch) 5 % der Kunden der Gruppe K eines Jahres im Folgejahr ebenfalls keinen Urlaub buchen.

Das Element b_{13} gibt an, welcher Anteil der Kunden der Gruppe K eines Jahres im Folgejahr genau einen Urlaub bucht; das Element b_{23} gibt an, welcher Anteil der Kunden der Gruppe K eines Jahres im Folgejahr mehr als einen Urlaub bucht. Da b_{13} und b_{23} zusammen den Anteil der Kunden der Gruppe K eines Jahres angeben, der im Folgejahr nicht schon wieder pausiert, muss $b_{13}+b_{23}=0,95$ gelten und aus $b_{13}\geq 0$ und $b_{23}\geq 0$ folgt $0\leq q\leq 0,95$.

(2) Die Verteilung der Kunden auf die verschiedenen Kundengruppen für das Jahr 2013 ergibt sich aus

$$\mathbf{B}^{2} \cdot \begin{pmatrix} 2624 \\ 1206 \\ 570 \end{pmatrix} = \begin{pmatrix} 0.8 & 0.2 & q \\ 0.1 & 0.6 & 0.95 - q \\ 0.1 & 0.2 & 0.05 \end{pmatrix}^{2} \cdot \begin{pmatrix} 2624 \\ 1206 \\ 570 \end{pmatrix} = \begin{pmatrix} 874, 1 \cdot q + 2177, 82 \\ -817, 1 \cdot q + 1656, 035 \\ -57 \cdot q + 566, 145 \end{pmatrix}$$

Es folgt $874, 1 \cdot q + 2177, 82 = 2790$ und damit $q \approx 0,70$.

6.2 Teilleistungen – Kriterien

Teilaufgabe a)

	Anforderungen	maximal erreichbare Punktzahl
	Der Prüfling	Punktzani
1	stellt das Buchungsverhalten der Kunden durch einen Übergangsgraphen dar.	6
2	bestimmt eine Übergangsmatrix, die das Buchungsverhalten beschreibt.	6
	gewählte Lösungsansatz und -weg muss nicht identisch mit dem der Modelllösung sein. lich richtige Alternativen werden an dieser Stelle mit entsprechender Punktzahl bewertet.	

Teilaufgabe b)

	Anforderungen	maximal erreichbare Punktzahl
	Der Prüfling	Punktzani
1	(1) gibt drei Änderungen im Buchungsverhalten an, die gegenüber den früheren Jahren erkennbar sind.	3
2	(2) bestimmt die zu erwartenden Verteilungen für die Jahre 2013 und 2017.	4
3	(2) beurteilt die Relevanz der Ergebnisse für das Jahr 2017 im Sachzusammenhang mit Hilfe von zwei Aspekten.	3
4	(3) ermittelt einen Lösungsansatz für die Verteilung für das Jahr 2009.	3
5	(3) bestimmt die Verteilung für das Jahr 2009.	2
6	(3) begründet, dass das Übergangsverhalten frühestens vom Jahr 2009 an mit Hilfe der angegebenen Matrix ${\bf A}$ beschrieben werden kann.	3
_	gewählte Lösungsansatz und -weg muss nicht identisch mit dem der Modelllösung sein. lich richtige Alternativen werden an dieser Stelle mit entsprechender Punktzahl bewertet.	

Teilaufgabe c)

	Anforderungen	maximal erreichbare Punktzahl
	Der Prüfling	Puliktzaili
1	ermittelt einen Lösungsansatz.	5
2	ermittelt die Lösung des Gleichungssystems.	4
	gewählte Lösungsansatz und -weg muss nicht identisch mit dem der Modelllösung sein. lich richtige Alternativen werden an dieser Stelle mit entsprechender Punktzahl bewertet.	

Teilaufgabe d)

	Anforderungen	maximal erreichbare
	Der Prüfling	Punktzahl
1	(1) erklärt, dass das Buchungsverhalten durch die Matrix ${\bf \it B}$ beschrieben werden kann.	6
2	(2) ermittelt eine Gleichung zur Bestimmung von q .	3
3	(2) berechnet q .	2
	gewählte Lösungsansatz und -weg muss nicht identisch mit dem der Modelllösung sein. lich richtige Alternativen werden an dieser Stelle mit entsprechender Punktzahl bewertet.	

7. Bewertungsbo	gen zur Prüfu	ngsarbeit
-----------------	---------------	-----------

Name des Prüflings:	Kursbezeichnung:
Schule:	

Teilaufgabe a)

	Anforderungen	Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK ²	ZK	DK
1	stellt das Buchungsverhalten	6			
2	bestimmt eine Übergangsmatrix	6			
sachl	ich richtige Alternativen: (12)				
	Summe Teilaufgabe a)	12			

Teilaufgabe b)

	Anforderungen	Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK
1	(1) gibt drei Änderungen	3			
2	(2) bestimmt die zu	4			
3	(2) beurteilt die Relevanz	3			
4	(3) ermittelt einen Lösungsansatz	3			
5	(3) bestimmt die Verteilung	2			
6	(3) begründet, dass das	3			
sachl	ch richtige Alternativen: (18)				
	Summe Teilaufgabe b)	18			

² EK = Erstkorrektur; ZK = Zweitkorrektur; DK = Drittkorrektur

Teilaufgabe c)

	Anforderungen	Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK
1	ermittelt einen Lösungsansatz.	5			
2	ermittelt die Lösung	4			
sachli	ch richtige Alternativen: (9)				
	Summe Teilaufgabe c)	9			

Teilaufgabe d)

	Anforderungen	Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK
1	(1) erklärt, dass das	6			
2	(2) ermittelt eine Gleichung	3			
3	(2) berechnet <i>q</i> .	2			
sachl	ich richtige Alternativen: (11)				
	Summe Teilaufgabe d)	11			

|--|

Festlegung der Gesamtnote (Bitte nur bei der letzten bearbeiteten Aufgabe ausfüllen.)

	Lösungsqualität			
	maximal erreichbare Punktzahl	EK	ZK	DK
Übertrag der Punktsumme aus der ersten bearbeiteten Aufgabe	50			
Übertrag der Punktsumme aus der zweiten bearbeiteten Aufgabe	50			
Punktzahl der gesamten Prüfungsleistung	100			
aus der Punktsumme resultierende Note				
Note ggf. unter Absenkung um ein bis zwei Notenpunkte gemäß § 13 Abs. 2 APO-GOSt				
			•	
Paraphe				

ggf. arithmetisches Mittel der Punktsummen aus EK und ZK:	-	
ggf. arithmetisches Mittel der Notenurteile aus EK und ZK:	_	
Die Klausur wird abschließend mit der Note:	_(Punkte) bewertet.
Unterschrift, Datum		

Grundsätze für die Bewertung (Notenfindung)

Für die Zuordnung der Notenstufen zu den Punktzahlen ist folgende Tabelle zu verwenden:

Note	Punkte	Erreichte Punktzahl
sehr gut plus	15	100 – 95
sehr gut	14	94 – 90
sehr gut minus	13	89 – 85
gut plus	12	84 – 80
gut	11	79 – 75
gut minus	10	74 – 70
befriedigend plus	9	69 – 65
befriedigend	8	64 – 60
befriedigend minus	7	59 – 55
ausreichend plus	6	54 – 50
ausreichend	5	49 – 45
ausreichend minus	4	44 – 39
mangelhaft plus	3	38 – 33
mangelhaft	2	32 – 27
mangelhaft minus	1	26 – 20
ungenügend	0	19 – 0

Name:			
ivallic.			

Abiturprüfung 2012

Mathematik, Grundkurs

Aufgabenstellung:

Sogenannte Smartphones werden immer beliebter. Ein Sechstel aller Handy-Besitzer (ca. 10 Millionen) besitzt ein Smartphone.

Im Folgenden sollen die genannten Anteile auch als Wahrscheinlichkeiten verwendet werden.

- a) Berechnen Sie die Wahrscheinlichkeiten für folgende Ereignisse:
 - *E*₁: *Unter 100 zufällig ausgewählten Handy-Besitzern haben genau 15 ein Smartphone.*
 - E_2 : Unter 200 zufällig ausgewählten Handy-Besitzern besitzen mindestens 25 ein Smartphone.
 - *E*₃: *Unter 200 zufällig ausgewählten Handy-Besitzern besitzen mindestens 32 und höchstens 38 ein Smartphone.*

(9 Punkte)

In der Produktion eines führenden Herstellers werden 4 % aller Geräte fehlerhaft hergestellt. Es wird einfachheitshalber angenommen, dass die Fehler zufällig und unabhängig voneinander auftreten.

- b) (1) Ein Kunde kauft ein Smartphone von diesem Hersteller. Ist dieses defekt, erhält er im Austausch ein neues Gerät.
 - Berechnen Sie die Wahrscheinlichkeit dafür, zweimal nacheinander ein defektes Smartphone zu erhalten.
 - (2) Bestimmen Sie die Anzahl von Geräten, die der laufenden Produktion mindestens entnommen werden müssen, um mit einer Wahrscheinlichkeit von mindestens 99 % mindestens ein fehlerhaftes Gerät zu erhalten.

(8 Punkte)

Ministerium für Schule und Weiterbildung des Landes Nordrhein-Westfalen

Name:

M GK HT 5 CAS Seite 2 von 9

Durch eine Produktionsumstellung	konnte der Fehleranteil	auf 2 % gesenkt werde	n. Aus eine

Durch eine Produktionsumstellung konnte der Fehleranteil auf 2 % gesenkt werden. Aus einer Charge, die vor zwei Wochen produziert wurde, wurde eine Stichprobe von 200 Smartphones ausgewählt. Unter diesen 200 Smartphones befinden sich genau sechs defekte.

c) Entscheiden Sie mit Hilfe der 1- σ -Umgebung um den Erwartungswert, ob die Maschinen vor zwei Wochen vermutlich noch mit 4 % oder bereits eher mit nur 2 % Fehleranteil produziert haben.

(10 Punkte)

- d) Da der Anteil der defekten Smartphones mit 2 % immer noch zu hoch ist, wird nun ein Prüfgerät eingesetzt, das defekte Smartphones mit einer Wahrscheinlichkeit von 99 % erkennt, allerdings auch 0,1 % der funktionsfähigen Smartphones als defekt einstuft.
 - (1) Stellen Sie die Situation mit Hilfe eines vollständigen Baumdiagramms graphisch dar.
 - (2) Bestimmen Sie die Wahrscheinlichkeit dafür, dass ein zufällig ausgewähltes Smartphone von dem Prüfgerät als defekt eingestuft wird.
 - (3) Bestimmen Sie die Wahrscheinlichkeit dafür, dass ein Smartphone in Wirklichkeit nicht defekt ist, obwohl das Prüfgerät es als defekt eingestuft hat.

(12 Punkte)

- e) Die Herstellerfirma rechtfertigte die letzte Preiserhöhung mit der Behauptung, dass nach einer Verbesserung der Produktion nun maximal 1 % aller Smartphones defekt sind. Ein Großhändler, der von der Preiserhöhung betroffen ist, bezweifelt diese Behauptung und möchte sie daher mit Hilfe eines Hypothesentests überprüfen. Er entnimmt dazu der Lieferung zufällig eine Stichprobe von 1000 Stück und testet die Hypothese $H_0: p \le 0,01$.
 - (1) Ermitteln Sie eine Entscheidungsregel für die angegebene Hypothese auf Grundlage der Stichprobe mit einem Signifikanzniveau von $\alpha = 0.05$.
 - (2) Beschreiben Sie den Fehler erster und zweiter Art im Sachzusammenhang.

(11 Punkte)

Name:				

Zugelassene Hilfsmittel:

- CAS (Computer-Algebra-System)
- Mathematische Formelsammlung
- Wörterbuch zur deutschen Rechtschreibung

Tabelle 1: σ-Regeln für Binomialverteilungen

Eine mit den Parametern n und p binomialverteilte Zufallsgröße X hat den Erwartungswert $\mu=n\cdot p$ und die Standardabweichung $\sigma=\sqrt{n\cdot p\cdot (1-p)}$. Wenn die Laplace-Bedingung $\sigma>3$ erfüllt ist, gelten die σ -Regeln:

$P(\mu - \sigma < X < \mu + \sigma) \approx 0,683$	$P(\mu-1,64\sigma < X < \mu+1,64\sigma) \approx 0,90$
$P(\mu - 2\sigma < X < \mu + 2\sigma) \approx 0,954$	$P(\mu-1,96\sigma < X < \mu+1,96\sigma) \approx 0,95$
$P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0,997$	$P(\mu - 2,58\sigma < X < \mu + 2,58\sigma) \approx 0,99$

Tabelle 2: Kumulierte Binomialverteilung für n = 10 und n = 20

$$F(n; p; k) = B(n; p; 0) + \dots + B(n; p; k) = \binom{n}{0} p^{0} (1 - p)^{n-0} + \dots + \binom{n}{k} p^{k} (1 - p)^{n-k}$$

						p						
n	k	0,02	0,05	0,08	0,1	0,15	0,2	0,25	0,3	0,5		n
	0	0,8171	0,5987	0,4344	0,3487	0,1969	0,1074	0,0563	0,0282	0,0010	9	
	1	0,9838	0,9139	0,8121	0,7361	0,5443	0,3758	0,2440	0,1493	0,0107	8	
	2	0,9991	0,9885	0,9599	0,9298	0,8202	0,6778	0,5256	0,3828	0,0547	7	
	3		0,9990	0,9942	0,9872	0,9500	0,8791	0,7759	0,6496	0,1719	6	
10	4		0,9999	0,9994	0,9984	0,9901	0,9672	0,9219	0,8497	0,3770	5	10
	5				0,9999	0,9986	0,9936	0,9803	0,9527	0,6230	4	
	6					0,9999	0,9991	0,9965	0,9894	0,8281	3	
	7						0,9999	0,9996	0,9984	0,9453	2	
	8		Nicht	aufgefüh	rte Werte	sind (auf	4 Dez) 1	0000	0,9999	0,9893	1	
	9		TVICII	aurgerun	rie werte	sina (aui	4 DCZ.) 1	.,0000		0,9990	0	
	0	0,6676	0,3585	0,1887	0,1216	0,0388	0,0115	0,0032	0,0008	0,0000	19	
	1	0,9401	0,7358	0,5169	0,3917	0,1756	0,0692	0,0243	0,0076	0,0000	18	
	2	0,9929	0,9245	0,7879	0,6769	0,4049	0,2061	0,0913	0,0355	0,0002	17	
	3	0,9994	0,9841	0,9294	0,8670	0,6477	0,4114	0,2252	0,1071	0,0013	16	
	4		0,9974	0,9817	0,9568	0,8298	0,6296	0,4148	0,2375	0,0059	15	
	5		0,9997	0,9962	0,9887	0,9327	0,8042	0,6172	0,4164	0,0207	14	
	6			0,9994	0,9976	0,9781	0,9133	0,7858	0,6080	0,0577	13	
	7			0,9999	0,9996	0,9941	0,9679	0,8982	0,7723	0,1316	12	
20	8				0,9999	0,9987	0,9900	0,9591	0,8867	0,2517	11	20
	9					0,9998	0,9974	0,9861	0,9520	0,4119	10	
	10						0,9994	0,9961	0,9829	0,5881	9	
	11						0,9999	0,9991	0,9949	0,7483	8	
	12							0,9998	0,9987	0,8684	7	
	13								0,9997	0,9423	6	
	14									0,9793	5	
	15		Nicht	aufgefüh	rte Werte	sind (auf	4 Dez.) 1	0000		0,9941	4	
	16		1 110110		-10	(uui	. 2 .2., 1	.,,,,,,,,		0,9987	3	
	17				1					0,9998	2	
n		0,98	0,95	0,92	0,9	0,85	0,8	0,75	0,7	0,5	k	n
						p						

Bei grau unterlegtem Eingang, d. h. $p \ge 0.5$, gilt: F(n; p; k) = 1 – abgelesener Wert

Tabelle 3: Kumulierte Binomialverteilung für n = 50

$$F(n; p; k) = B(n; p; 0) + \dots + B(n; p; k) = \binom{n}{0} p^{0} (1 - p)^{n - 0} + \dots + \binom{n}{k} p^{k} (1 - p)^{n - k}$$

						р						
n	k	0,02	0,05	0,1	0,15	0,2	0,25	0,3	0,4	0,5		n
	0	0,3642	0,0769	0,0052	0,0003	0,0000	0,0000	0,0000	0,0000	0,0000	49	
	1	0,7358	0,2794	0,0338	0,0029	0,0002	0,0000	0,0000	0,0000	0,0000	48	
	2	0,9216	0,5405	0,1117	0,0142	0,0013	0,0001	0,0000	0,0000	0,0000	47	
	3	0,9822	0,7604	0,2503	0,0460	0,0057	0,0005	0,0000	0,0000	0,0000	46	
	4	0,9968	0,8964	0,4312	0,1121	0,0185	0,0021	0,0002	0,0000	0,0000	45	
	5	0,9995	0,9622	0,6161	0,2194	0,0480	0,0070	0,0007	0,0000	0,0000	44	
	6	0,9999	0,9882	0,7702	0,3613	0,1034	0,0194	0,0025	0,0000	0,0000	43	
	7		0,9968	0,8779	0,5188	0,1904	0,0453	0,0073	0,0001	0,0000	42	
	8		0,9992	0,9421	0,6681	0,3073	0,0916	0,0183	0,0002	0,0000	41	
	9		0,9998	0,9755	0,7911	0,4437	0,1637	0,0402	0,0008	0,0000	40	
	10			0,9906	0,8801	0,5836	0,2622	0,0789	0,0022	0,0000	39	
	11			0,9968	0,9372	0,7107	0,3816	0,1390	0,0057	0,0000	38	
	12			0,9990	0,9699	0,8139	0,5110	0,2229	0,0133	0,0002	37	
	13			0,9997	0,9868	0,8894	0,6370	0,3279	0,0280	0,0005	36	
	14			0,9999	0,9947	0,9393	0,7481	0,4468	0,0540	0,0013	35	
	15				0,9981	0,9692	0,8369	0,5692	0,0955	0,0033	34	
	16				0,9993	0,9856	0,9017	0,6839	0,1561	0,0077	33	
	17				0,9998	0,9937	0,9449	0,7822	0,2369	0,0164	32	
50	18				0,9999	0,9975	0,9713	0,8594	0,3356	0,0325	31	50
	19					0,9991	0,9861	0,9152	0,4465	0,0595	30	
	20					0,9997	0,9937	0,9522	0,5610	0,1013	29	
	21					0,9999	0,9974	0,9749	0,6701	0,1611	28	
	22						0,9990	0,9877	0,7660	0,2399	27	
	23						0,9996	0,9944	0,8438	0,3359	26	
	24						0,9999	0,9976	0,9022	0,4439	25	
	25							0,9991	0,9427	0,5561	24	
	26							0,9997	0,9686	0,6641	23	
	27							0,9999	0,9840	0,7601	22	
	28								0,9924	0,8389	21	
	29								0,9966	0,8987	20	
	30								0,9986	0,9405	19	
	31								0,9995	0,9675	18	
	32								0,9998	0,9836	17	
	33								0,9999	0,9923	16	
	34									0,9967	15	
	35		Nic	ht aufgefü	hrte Werte	sind (auf	4 Dez.) 1,0	000		0,9987	14	
	36									0,9995	13	
	37									0,9998	12	
n		0,98	0,95	0,9	0,85	0,8	0,75	0,7	0,6	0,5	k	n

Bei grau unterlegtem Eingang, d. h. $p \ge 0.5$, gilt: F(n; p; k) = 1 – abgelesener Wert

Ī	M	Г.	E	*
ı	۲.	4	Š	3
1	A	ı	C	3//
1	V	4	×	

Tabelle 4: Kumulierte Binomialverteilung für n = 100

 $F(n; p; k) = B(n; p; 0) + ... + B(n; p; k) = {n \choose 0} p^{0} (1-p)^{n-0} + ... + {n \choose k} p^{k} (1-p)^{n-k}$

							р							
n	k	0,02	0,05	0,08	0,1	0,15	1/6	0,2	0,25	0,3	0,4	0,5		n
	0	0,1326	0,0059	0,0002	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	99	
	1	0,4033	0,0371	0,0023	0,0003	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	98	
	2	0,6767	0,1183	0,0113	0,0019	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	97	
	3	0,8590	0,2578	0,0367	0,0078	0,0001	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	96	
	4	0,9492	0,4360	0,0903	0,0237	0,0004	0,0001	0,0000	0,0000	0,0000	0,0000	0,0000	95	
	5 6	0,9845 0,9959	0,6160 0,7660	0,1799 0,3032	0,0576 0,1172	0,0016 0,0047	0,0004 0,0013	0,0000 0,0001	0,0000 0,0000	0,0000 0,0000	0,0000 0,0000	0,0000 0,0000	94	
	7	0,9939	0,8720	0,3032	0,1172	0,0047	0,0013	0,0001	0,0000	0,0000	0,0000	0,0000	92	
	8	0,9998	0,9369	0,5926	0,3209	0,0122	0,0095	0,0009	0,0000	0,0000	0,0000	0,0000	91	
	9	0,5550	0,9718	0,7220	0,4513	0,0551	0,0213	0,0003	0,0000	0,0000	0,0000	0,0000	90	
	10		0,9885	0,8243	0,5832	0,0994	0,0427	0,0057	0,0001	0,0000	0,0000	0,0000	89	
	11		0,9957	0,8972	0,7030	0,1635	0,0777	0,0126	0,0004	0,0000	0,0000	0,0000	88	
	12		0,9985	0,9441	0,8018	0,2473	0,1297	0,0253	0,0010	0,0000	0,0000	0,0000	87	
	13		0,9995	0,9718	0,8761	0,3474	0,2000	0,0469	0,0025	0,0001	0,0000	0,0000	86	
	14		0,9999	0,9867	0,9274	0,4572	0,2874	0,0804	0,0054	0,0002	0,0000	0,0000	85	
	15			0,9942	0,9601	0,5683	0,3877	0,1285	0,0111	0,0004	0,0000	0,0000	84	
	16			0,9976	0,9794	0,6725	0,4942	0,1923	0,0211	0,0010	0,0000	0,0000	83	
	17 18			0,9991 0,9997	0,9900 0,9954	0,7633 0,8372	0,5994 0,6965	0,2712 0,3621	0,0376 0,0630	0,0022 0,0045	0,0000 0,0000	0,0000 0,0000	82	
	19			0,9999	0,9934	0,8935	0,7803	0,3621	0,0030	0,0043	0,0000	0,0000	81	
	20			0,5555	0,9992	0,9337	0,8481	0,5595	0,1488	0,0065	0,0000	0,0000	79	
	21				0,9997	0,9607	0,8998	0,6540	0,2114	0,0288	0,0000	0,0000	78	i
	22				0,9999	0,9779	0,9369	0,7389	0,2864	0,0479	0,0001	0,0000	77	
	23					0,9881	0,9621	0,8109	0,3711	0,0755	0,0003	0,0000	76	
	24					0,9939	0,9783	0,8686	0,4617	0,1136	0,0006	0,0000	75	
	25					0,9970	0,9881	0,9125	0,5535	0,1631	0,0012	0,0000	74	
	26					0,9986	0,9938	0,9442	0,6417	0,2244	0,0024	0,0000	73	
	27					0,9994	0,9969	0,9658	0,7224	0,2964	0,0046	0,0000	72	
	28					0,9997 0,9999	0,9985	0,9800	0,7925	0,3768	0,0084	0,0000	71	
	29 30					0,9999	0,9993 0,9997	0,9888 0,9939	0,8505 0,8962	0,4623 0,5491	0,0148 0,0248	0,0000 0,0000	70 69	
	31						0,9999	0,9969	0,8902	0,6331	0,0248	0,0000	68	
	32						0,3333	0,9984	0,9554	0,7107	0,0615	0,0001	67	
	33							0,9993	0,9724	0,7793	0,0913	0,0004	66	
100	34							0,9997	0,9836	0,8371	0,1303	0,0009	65	100
	35							0,9999	0,9906	0,8839	0,1795	0,0018	64	
	36							0,9999	0,9948	0,9201	0,2386	0,0033	63	
	37								0,9973	0,9470	0,3068	0,0060	62	
	38								0,9986	0,9660	0,3822	0,0105	61	
	39								0,9993	0,9790	0,4621	0,0176	60	
	40								0,9997	0,9875	0,5433	0,0284	59	
	41 42								0,9999 0,9999	0,9928 0,9960	0,6225 0,6967	0,0443 0,0666	58 57	
	43								0,9999	0,9900	0,7635	0,000	56	
	44									0,9989	0,7033	0,0307	55	
	45									0,9995	0,8689	0,1841	54	
	46									0,9997	0,9070	0,2421	53	
	47									0,9999	0,9362	0,3086	52	
	48									0,9999	0,9577	0,3822	51	
	49										0,9729	0,4602	50	
	50										0,9832	0,5398	49	
	51										0,9900	0,6178	48	
	52										0,9942	0,6914	47	
	53 54										0,9968 0,9983	0,7579	46	
	55										0,9983	0,8159 0,8644	45	
	56										0,9991	0,9033	43	
	57										0,9998	0,9334	42	
	58										0,9999	0,9557	41	
	59											0,9716	40	
	60											0,9824	39	
	61											0,9895	38	
	62											0,9940	37	
	63											0,9967	36	
	64											0,9982	35	
	65				Nicht aufge	führte Werte	sind (auf 4 E	Dez.) 1,0000				0,9991	34	
	66 67				_							0,9996 0,9998	33 32	
	68											0,9998	31	
n	- 50	0,98	0,95	0,92	0,9	0,85	5/6	0,8	0,75	0,7	0,6	0,5	k	n
		2,00	2,00	-,	-,0	2,00	3,0	-,0	2,70	-,,	-,-	-,-	-	

Tabelle 5: Kumulierte Binomialverteilung für n = 200

$$F(n; p; k) = B(n; p; 0) + ... + B(n; p; k) = {n \choose 0} p^{0} (1-p)^{n-0} + ... + {n \choose k} p^{k} (1-p)^{n-k}$$

R					1	р				
1	n	k	0,02	0,04			1/6	0,2		n
2		0	0,0176	0,0003	0,0000	0,0000	0,0000	0,0000	199	
3			1							
4			1							
5										
6			1							
7			1							
S			1							
9 0, 0,9925 0,7192 0,4547 0,0035 0,0000 0,0000 199 199 111			1							
10										
11										
13			1							
14		12	0,9998	0,9401	0,7965	0,0320	0,0000	0,0000	187	
15		13	0,9999	0,9688	0,8701	0,0566	0,0000	0,0000	186	
16		14				0,0929				
17										
18										
19										
20					,					
21										
22				0,5555						
23										
24										
26					,,,,,,,,					
27		25				0,8995	0,0648		174	
28		26				0,9328	0,0945	0,0064	173	
29 0,9837 0,2366 0,0283 170 169 169 169 167 133 141 141 141 141 152 152 154 155 156 155 155 156 155 155 156 155		27				0,9566	0,1329	0,0110	172	
200 31										
100										
32	200									200
33 0,9985 0,5210 0,1239 166 165 162	200									200
34 0,9992 0,5953 0,1656 165 165 35 0,9996 0,6658 0,2151 164 163 37 0,9999 0,7877 0,3345 162 38 0,8369 0,4019 161 1										
35 0,9996										
36 37 0,9998 0,7305 0,2717 163 162 38 38 38 0,9999 0,7877 0,3345 162 160 0,9106 0,5422 159 0,956 0,6758 157 158 0,9969 0,7355 156 0,9860 0,9860 0,9106 0,7887 155 156 0,9872 0,8349 154 154 154 155 156 0,9990 0,9956 152 159 151 151 151 151 152 153										
37 0,9999										
39		37								
40		38					0,8369	0,4019	161	
41							0,8777	0,4718	160	
42										
43										
44										
45										
46										
47										
48										
49										
51										
52 0,9997 0,9843 147 53 0,9998 0,9997 146 54 0,9999 0,9934 145 55 0,9959 144 56 0,9975 143 57 0,9985 142 58 0,9991 141 59 0,9995 140 60 Nicht aufgeführte Werte sind (auf 4 Dezimalen) 1,0000 0,9997 139 0,9998 0,9999 138 137 n 0,998 0,996 0,995 0,9 5/6 0,8 k n		50					0,9990	0,9655	149	
53		51					0,9995	0,9764	148	
54 0,9999 0,9934 145 144 145 144 145 145 144 145 145 145 144 145		52						0,9843	147	
55 0,9959 144 143 143 144 143 144 143 144 145 14		53						0,9897	146	
143							0,9999			
57 0,9985 142 0,9991 141										
58 0,9991 141 59 0,9995 140 60 0,9997 0,9997 61 0,9998 0,9999 62 0,9999 138 0,9999 138 137 0,9999 0,9999 138 137 138 137 138 137 138 139 130 130 130 130 130 130 130 130 131 130 130 131 131 130 132 131 131 133 131 131 134 131 132 130 131 132 130 131 132 131 132 132 131 132 133 132 133 134 133 134 132 134 132 132 134 132 133 135 132 133 134 132 133 134 132 133 132 133 134 132 133 134 134 132 <td></td>										
59 0,9995 140 139 138 137										
60 Nicht aufgeführte Werte sind (auf 4 Dezimalen) 1,0000 0,9997 0,9998 138 138 0,9999 138 137 k n 0,998 0,96 0,95 0,9 5/6 0,8 n n										
61 Nicht aufgerunnte werte sind (auf 4 Dezimaien) 1,0000										
n 0,999 137 n 0,98 0,96 0,95 0,9 5/6 0,8			Nicht	aufgeführte W	erte sind (auf ه	4 Dezimalen) 1,	0000			
n 0,98 0,96 0,95 0,9 5/6 0,8 k n										
	n		0,98	0,96	0.95	0.9	5/6			n
			. ,	.,						

Bei grau unterlegtem Eingang, d. h. $p \ge 0.5$, gilt: F(n; p; k) = 1 – abgelesener Wert

Tabelle 6: Kumulierte Binomialverteilung für n = 1000

$$F(n; p; k) = B(n; p; 0) + ... + B(n; p; k) = {n \choose 0} p^{0} (1-p)^{n-0} + ... + {n \choose k} p^{k} (1-p)^{n-k}$$

					р					
n	k	0,01	0,015	0,02	0,025	0,03	0,035	0,04		n
	0	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	999	
	1	0,0005	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	998	
	2	0,0027	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	997	
	3 4	0,0101	0,0002	0,0000	0,0000	0,0000	0,0000 0,0000	0,0000	996	
	5	0,0287 0,0661	0,0008 0,0026	0,0000 0,0001	0,0000 0,0000	0,0000 0,0000	0,0000	0,0000 0,0000	995	
	6	0,1289	0,0020	0,0001	0,0000	0,0000	0,0000	0,0000	993	
	7	0,2189	0,0174	0,0007	0,0000	0,0000	0,0000	0,0000	992	
	8	0,3317	0,0364	0,0019	0,0001	0,0000	0,0000	0,0000	991	
	9	0,4573	0,0684	0,0047	0,0002	0,0000	0,0000	0,0000	990	
	10	0,5830	0,1166	0,0102	0,0005	0,0000	0,0000	0,0000	989	
	11	0,6974	0,1828	0,0204	0,0013	0,0001	0,0000	0,0000	988	
	12	0,7925	0,2657	0,0376	0,0029	0,0001	0,0000	0,0000	987	
	13	0,8656	0,3618	0,0642	0,0060	0,0003	0,0000	0,0000	986	
	14	0,9176	0,4649	0,1025	0,0116	0,0008	0,0000	0,0000	985	
	15 16	0,9521 0,9736	0,5681 0,6649	0,1539 0,2185	0,0211 0,0360	0,0017 0,0035	0,0001 0,0002	0,0000 0,0000	984	
	17	0,9862	0,8649	0,2165	0,0582	0,0035	0,0002	0,0000	982	
	18	0,9931	0,8211	0,3797	0,0893	0,0000	0,0003	0,0001	981	
	19	0,9967	0,8769	0,4694	0,1304	0,0204	0,0020	0,0001	980	
	20	0,9985	0,9186	0,5591	0,1822	0,0333	0,0038	0,0003	979	
	21	0,9993	0,9482	0,6446	0,2442	0,0519	0,0068	0,0006	978	
	22	0,9997	0,9683	0,7222	0,3149	0,0774	0,0116	0,0012	977	
	23	0,9999	0,9813	0,7895	0,3919	0,1110	0,0191	0,0022	976	
	24		0,9894	0,8455	0,4724	0,1534	0,0302	0,0039	975	
	25		0,9942	0,8901	0,5529	0,2045	0,0458	0,0067	974	
	26 27		0,9969	0,9242	0,6304	0,2637	0,0670	0,0110	973	
	28		0,9984 0,9992	0,9493 0,9671	0,7020 0,7658	0,3299 0,4009	0,0948 0,1299	0,0175 0,0270	972	
	29		0,9996	0,9793	0,8207	0,4746	0,1233	0,0270	970	
	30		0,9998	0,9874	0,8662	0,5484	0,2225	0,0580	969	
	31		0,9999	0,9925	0,9027	0,6197	0,2793	0,0812	968	
	32			0,9957	0,9311	0,6866	0,3416	0,1105	967	
	33			0,9976	0,9524	0,7472	0,4079	0,1463	966	
1000	34			0,9987	0,9680	0,8005	0,4763	0,1887	965	1000
	35			0,9993	0,9790	0,8461	0,5448	0,2374	964	
	36			0,9996	0,9865	0,8838	0,6114	0,2919	963	
	37 38			0,9998 0,9999	0,9916 0,9949	0,9142 0,9381	0,6743 0,7321	0,3511 0,4135	962 961	
	39			0,5555	0,9969	0,9563	0,7839	0,4777	960	
	40				0,9982	0,9698	0,8289	0,5419	959	
	41				0,9990	0,9796	0,8672	0,6046	958	
	42				0,9994	0,9865	0,8989	0,6642	957	
	43				0,9997	0,9912	0,9246	0,7196	956	
	44				0,9998	0,9944	0,9448	0,7698	955	
	45				0,9999	0,9965	0,9603	0,8142	954	
	46 47					0,9979	0,9721	0,8526	953	
	48					0,9987 0,9993	0,9807 0,9869	0,8851 0,9119	952 951	
	49					0,9996	0,9913	0,9337	950	
	50					0,9998	0,9943	0,9509	949	
	51					0,9999	0,9964	0,9643	948	
	52					0,9999	0,9977	0,9745	947	
	53						0,9986	0,9821	946	
	54						0,9991	0,9876	945	
	55						0,9995	0,9916	944	
	56						0,9997	0,9944	943	
	57						0,9998	0,9963	942	
	58 59						0,9999 0,9999	0,9976 0,9985	941	
	60						0,3399	0,9985	940	
	61							0,9991	939	
	62							0,9996	937	
	63		*** *		X47. 4. 1 2.1	(AB):	0000	0,9998	936	
	64		Nich	t autgeführte	Werte sind (a	aur 4 Dez.) 1,	UUUU	0,9999	935	
	65							0,9999	934	
		0,99	0,985	0,98	0,975	0,97	0,965	0,96	k	

Bei grau unterlegtem Eingang, d. h. $p \ge 0.5$ gilt: F(n; p; k) = 1 – abgelesener Wert

Tabelle 7: Normalverteilung

$$\phi(z) = 0,...$$

$$\phi(-z) = 1 - \phi(z)$$

Z	0	1	2	3	4	5	6	7	8	9
0,0	5000	5040	5080	5120	5160	5199	5239	5279	5319	5359
0,1	5398	5438	5478	5517	5557	5596	5636	5675	5714	5753
0,2	5793	5832	5871	5910	5948	5987	6026	6064	6103	6141
0,3	6179	6217	6255	6293	6331	6368	6406	6443	6480	6517
0,4	6554	6591	6628	6664	6700	6736	6772	6808	6844	6879
0,5	6915	6950	6985	7019	7054	7088	7123	7157	7190	7224
0,6	7257	7291	7324	7357	7389	7422	7454	7486	7517	7549
0,7	7580	7611	7642	7673	7704	7734	7764	7794	7823	7852
0,8	7881	7910	7939	7967	7995	8023	8051	8078	8106	8133
0,9	8159	8186	8212	8238	8264	8289	8315	8340	8365	8389
1,0	8413	8438	8461	8485	8508	8531	8554	8577	8599	8621
1,1	8643	8665	8686	8708	8729	8749	8770	8790	8810	8830
1,2	8849	8869	8888	8907	8925	8944	8962	8980	8997	9015
1,3	9032	9049	9066	9082	9099	9115	9131	9147	9162	9177
1,4	9192	9207	9222	9236	9251	9265	9279	9292	9306	9319
1,5	9332	9345	9357	9370	9382	9394	9406	9418	9429	9441
1,6	9452	9463	9474	9484	9495	9505	9515	9525	9535	9545
1,7	9554	9564	9573	9582	9591	9599	9608	9616	9625	9633
1,8	9641	9649	9656	9664	9671	9678	9686	9693	9699	9706
1,9	9713	9719	9726	9732	9738	9744	9750	9756	9761	9767
2,0	9772	9778	9783	9788	9793	9798	9803	9808	9812	9817
2,1	9821	9826	9830	9834	9838	9842	9846	9850	9854	9857
2,2	9861	9864	9868	9871	9875	9878	9881	9884	9887	9890
2,3	9893	9896	9898	9901	9904	9906	9909	9911	9913	9916
2,4	9918	9920	9922	9925	9927	9929	9931	9932	9934	9936
2,5	9938	9940	9941	9943	9945	9946	9948	9949	9951	9952
2,6	9953	9955	9956	9957	9959	9960	9961	9962	9963	9964
2,7	9965	9966	9967	9968	9969	9970	9971	9972	9973	9974
2,8	9974	9975	9976	9977	9977	9978	9979	9979	9980	9981
2,9	9981	9982	9982	9983	9984	9984	9985	9985	9986	9986
3,0	9987	9987	9987	9988	9988	9989	9989	9989	9990	9990
3,1	9990	9991	9991	9991	9992	9992	9992	9992	9993	9993
3,2	9993	9993	9994	9994	9994	9994	9994	9995	9995	9995
3,3	9995	9995	9995	9996	9996	9996	9996	9996	9996	9997
3,4	9997	9997	9997	9997	9997	9997	9997	9997	9997	9998
3,5	9998	9998	9998	9998	9998	9998	9998	9998	9998	9998
3,6	9998	9998	9999	9999	9999	9999	9999	9999	9999	9999
3,7	9999	9999	9999	9999	9999	9999	9999	9999	9999	9999
3,8	9999	9999	9999	9999	9999	9999	9999	9999	9999	9999

Beispiele für den Gebrauch:

$$\phi(2,32) = 0,9898$$

$$\phi(-0,9) = 1 - \phi(0,9) = 0,1841$$

$$\phi(z) = 0,994 \Rightarrow z = 2,51$$

Unterlagen für die Lehrkraft

Abiturprüfung 2012

Mathematik, Grundkurs

1. Aufgabenart

Stochastik mit Alternative 1 (ein- und zweiseitiger Hypothesentest)

2. Aufgabenstellung¹

siehe Prüfungsaufgabe

3. Materialgrundlage

entfällt

4. Bezüge zu den Vorgaben 2012

- 1. Inhaltliche Schwerpunkte
 - Wahrscheinlichkeit, bedingte Wahrscheinlichkeit, Unabhängigkeit
 - Binomialverteilung einschließlich Erwartungswert und Standardabweichung Alternative 1:
 - Ein- und zweiseitiger Hypothesentest
- 2. Medien/Materialien
 - entfällt

5. Zugelassene Hilfsmittel

- CAS (Computer-Algebra-System)
- Mathematische Formelsammlung
- Wörterbuch zur deutschen Rechtschreibung

Die Aufgabenstellung deckt inhaltlich alle drei Anforderungsbereiche ab.

6. Vorgaben für die Bewertung der Schülerleistungen

6.1 Modelllösungen

Modelllösung a)

Die Zufallsgröße X beschreibe die Anzahl der Personen, die ein Smartphone besitzen.

X sei binomialverteilt mit n=100 und $p=\frac{1}{6}$. Die gesuchte Wahrscheinlichkeit beträgt:

$$P(X = 15) = {100 \choose 15} \cdot \left(\frac{1}{6}\right)^{15} \cdot \left(\frac{5}{6}\right)^{85} \approx 0,1002 \quad [\approx 0,3877 - 0,2874 = 0,1003 \text{ bei}]$$

Verwendung der Tabelle].

Die Zufallsgröße *X* beschreibe die Anzahl der Personen, die ein Smartphone besitzen.

X sei binomialverteilt mit n = 200 und $p = \frac{1}{6}$. Die gesuchte Wahrscheinlichkeit beträgt:

$$P(X \ge 25) = 1 - P(X \le 24) = 1 - \sum_{k=0}^{24} {200 \choose k} \cdot \left(\frac{1}{6}\right)^k \cdot \left(\frac{5}{6}\right)^{200-k}$$

\$\approx 0.9574.

Die Wahrscheinlichkeit für das Ereignis E_3 beträgt:

$$P(32 \le X \le 38) = P(X \le 38) - P(X \le 31) \approx 0,8369 - 0,3711 = 0,4658.$$

Modelllösung b)

- (1) $P("Zwei defekte nacheinander") = 0.04^2 = 0.0016$.
- (2) Die Zufallsgröße *X* beschreibe die Anzahl der fehlerhaften Smartphones.

X sei binomialverteilt mit den Parametern *n* und p = 0,04. Es soll gelten:

$$P(X \ge 1) \ge 0.99 \Leftrightarrow 1 - P(X = 0) \ge 0.99 \Leftrightarrow 0.96^n \le 0.01$$
$$\Rightarrow n \ge \frac{\ln(0.01)}{\ln(0.96)} \approx 112.81.$$

Es müssen also mindestens 113 Smartphones entnommen werden.

Modelllösung c)

Bestimme zunächst die 1- σ -Umgebungen zu p=0.02 und p=0.04:

 ${m p}$ = **0,02**: Die Standardabweichung beträgt $\sigma_1 = \sqrt{200\cdot 0,02\cdot 0,98}\approx 1,98$, der Erwartungswert $\mu_1 = 200\cdot 0,02=4$:

$$I_{0,02} \approx [4-1\cdot 1,98;4+1\cdot 1,98] = [2,02;5,98].$$

 ${m p}={m 0,04}$: Die Standardabweichung beträgt $\sigma_2=\sqrt{200\cdot 0,04\cdot 0,96}\approx 2,77$, der Erwartungswert $\mu_2=200\cdot 0,04=8$: $I_{0.04}\approx \left[8-1\cdot 2,77;8+1\cdot 2,77\right]=\left[5,23;10,77\right].$

Der Wert 6 liegt im Intervall $I_{0,04}$, nicht jedoch in $I_{0,02}$. Die Abweichung zwischen dem Erwartungswert μ_1 und der Anzahl der defekten Smartphones liegt also nur für p=0,04 im Bereich der einfachen Standardabweichung. Es ist also wahrscheinlicher, dass die Stichprobe aus der Produktion der schlechteren Qualität (4 %) stammt.

Modelllösung d)

(1) Baumdiagramm: 0,99 als defekt eingestuft 0,02 Gerät defekt 0,01 als funktionsfähig eingestuft 0,001 als defekt eingestuft 0,98 Gerät funktionsfähig 0,999 als funktionsfähig eingestuft

(2) $P(\text{als defekt eingestuft}) = 0.02 \cdot 0.99 + 0.98 \cdot 0.001 = 0.02078$

(3)
$$P_{\text{als defekt eingestuft}} \text{ (nicht defekt)} = \frac{0.98 \cdot 0.001}{0.02 \cdot 0.99 + 0.98 \cdot 0.001} \approx 0.047$$

[Alternativ ist auch eine Lösung durch Umdrehen des Baumdiagramms möglich.]

Modelllösung e)

(1) Die Zufallsgröße X gibt die Anzahl der defekten Smartphones in der Stichprobe an. Dann kann X als binomialverteilt angenommen werden mit Trefferwahrscheinlichkeit p = 0.01 und Stichprobenanzahl n = 1000.

Der Erwartungswert von X beträgt $\mu = 1000 \cdot 0,01 = 10$, die Standardabweichung $\sigma = \sqrt{1000 \cdot 0,01 \cdot 0,99} \approx 3,146 > 3$.

Also ist die Laplace-Bedingung erfüllt und es gilt näherungsweise:

$$P_{H_0}(X \le \mu + 1,64 \cdot \sigma) \ge 0.95$$
 und es ist $\mu + 1,64 \cdot \sigma \approx 15,16$.

Als Entscheidungsregel erhält man:

Die Hypothese H_0 wird genau dann abgelehnt, wenn $X \ge 16$ ist, ansonsten wird die Hypothese beibehalten.

(2) Fehler 1. Art: Die Hypothese des Herstellers $p \le 0,01$ ist wahr, wird aber aufgrund einer zufällig hohen Anzahl defekter Smartphones fälschlicherweise verworfen. Fehler 2. Art: Die Hypothese (das Versprechen) des Herstellers ist falsch, sie wird aber aufgrund einer zufällig geringen Anzahl defekter Smartphones in der Stichprobe nicht abgelehnt.

6.2 Teilleistungen – Kriterien

Teilaufgabe a)

	Anforderungen	maximal erreichbare Punktzahl
	Der Prüfling	Punktzani
1	berechnet die Wahrscheinlichkeit, dass genau 15 Handy-Besitzer ein Smartphone haben.	2
2	berechnet die Wahrscheinlichkeit, dass mindestens 25 Handy-Besitzer ein Smartphone besitzen.	3
3	berechnet die Wahrscheinlichkeit, dass mindestens 32 und höchstens 38 Handy-Besitzer ein Smartphone besitzen.	4
	gewählte Lösungsansatz und -weg muss nicht identisch mit dem der Modelllösung sein. lich richtige Alternativen werden an dieser Stelle mit entsprechender Punktzahl bewertet.	

Teilaufgabe b)

	Anforderungen	maximal erreichbare Punktzahl
	Der Prüfling	Punktzani
1	(1) berechnet die Wahrscheinlichkeit, zweimal nacheinander ein defektes Smartphone zu erhalten.	2
2	(2) bestimmt einen Ansatz zur Ermittlung des gesuchten Stichprobenumfangs.	3
3	(2) berechnet das gesuchte <i>n</i> .	3
	gewählte Lösungsansatz und -weg muss nicht identisch mit dem der Modelllösung sein. lich richtige Alternativen werden an dieser Stelle mit entsprechender Punktzahl bewertet.	

Teilaufgabe c)

	Anforderungen	maximal erreichbare
	Der Prüfling	Punktzahl
1	berechnet Standardabweichung und Erwartungswert für $p = 0.02$.	3
2	berechnet Standardabweichung und Erwartungswert für $p = 0.04$.	3
3	entscheidet aufgrund der Ergebnisse.	4
	gewählte Lösungsansatz und -weg muss nicht identisch mit dem der Modelllösung sein. lich richtige Alternativen werden an dieser Stelle mit entsprechender Punktzahl bewertet.	

Teilaufgabe d)

	Anforderungen	maximal erreichbare		
	Der Prüfling	Punktzahl		
1	(1) stellt die Situation mit Hilfe eines vollständigen Baumdiagramms dar.	6		
2	(2) bestimmt $P(\text{als defekt eingestuft})$.	3		
3	(3) bestimmt die gesuchte Wahrscheinlichkeit.	3		
	Der gewählte Lösungsansatz und -weg muss nicht identisch mit dem der Modelllösung sein. Sachlich richtige Alternativen werden an dieser Stelle mit entsprechender Punktzahl bewertet.			

Teilaufgabe e)

	Anforderungen	maximal erreichbare Punktzahl
	Der Prüfling	Puliktzalli
1	(1) ermittelt eine Entscheidungsregel.	5
2	(2) beschreibt die Fehler 1. und 2. Art im Sachzusammenhang.	6
	gewählte Lösungsansatz und -weg muss nicht identisch mit dem der Modelllösung sein. lich richtige Alternativen werden an dieser Stelle mit entsprechender Punktzahl bewertet.	

7. Bewertun	gsbogen zur Prüfungsarbeit	
Name des Prüflings		Kursbezeichnung:
Schule:		

Teilaufgabe a)

	Anforderungen		Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK ²	ZK	DK	
1	berechnet die Wahrscheinlichkeit	2				
2	berechnet die Wahrscheinlichkeit	3				
3	berechnet die Wahrscheinlichkeit	4				
sachl	ch richtige Alternativen: (9)					
	Summe Teilaufgabe a)	9				

Teilaufgabe b)

	Anforderungen		Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK	
1	(1) berechnet die Wahrscheinlichkeit	2				
2	(2) bestimmt einen Ansatz	3				
3	(2) berechnet das gesuchte	3				
sachli	ich richtige Alternativen: (8)					
	Summe Teilaufgabe b)	8				

² EK = Erstkorrektur; ZK = Zweitkorrektur; DK = Drittkorrektur

Teilaufgabe c)

	Anforderungen		Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK	
1	berechnet Standardabweichung und	3				
2	berechnet Standardabweichung und	3				
3	entscheidet aufgrund der	4				
sachli	ch richtige Alternativen: (10)					
	Summe Teilaufgabe c)	10				

Teilaufgabe d)

	Anforderungen	Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK
1	(1) stellt die Situation	6			
2	(2) bestimmt $P(\text{als defekt eingestuft})$.	3			
3	(3) bestimmt die gesuchte	3			
sachl	ich richtige Alternativen: (12)				
	Summe Teilaufgabe d)	12			

Teilaufgabe e)

	Anforderungen	Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK
1	(1) ermittelt eine Entscheidungsregel.	5			
2	(2) beschreibt die Fehler	6			
sachli	ich richtige Alternativen: (11)				
	Summe Teilaufgabe e)	11			

Summe insgesamt	50		

Festlegung der Gesamtnote (Bitte nur bei der letzten bearbeiteten Aufgabe ausfüllen.)

	Lösungsqualität				
	maximal erreichbare Punktzahl	EK	ZK	DK	
Übertrag der Punktsumme aus der ersten bearbeiteten Aufgabe	50				
Übertrag der Punktsumme aus der zweiten bearbeiteten Aufgabe	50				
Punktzahl der gesamten Prüfungsleistung	100				
aus der Punktsumme resultierende Note					
Note ggf. unter Absenkung um ein bis zwei Notenpunkte gemäß § 13 Abs. 2 APO-GOSt					
Paraphe					

ggf. arithmetisches Mittel der Punktsummen aus EK und ZK:	_	
ggf. arithmetisches Mittel der Notenurteile aus EK und ZK:	_	
Die Klausur wird abschließend mit der Note:	. (Punkte) bewertet.

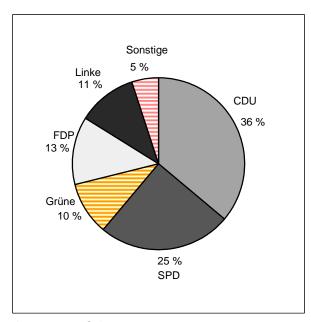
Unterschrift, Datum

Grundsätze für die Bewertung (Notenfindung)

Für die Zuordnung der Notenstufen zu den Punktzahlen ist folgende Tabelle zu verwenden:

Note	Punkte	Erreichte Punktzahl
sehr gut plus	15	100 – 95
sehr gut	14	94 – 90
sehr gut minus	13	89 – 85
gut plus	12	84 – 80
gut	11	79 – 75
gut minus	10	74 – 70
befriedigend plus	9	69 – 65
befriedigend	8	64 – 60
befriedigend minus	7	59 – 55
ausreichend plus	6	54 – 50
ausreichend	5	49 – 45
ausreichend minus	4	44 – 39
mangelhaft plus	3	38 – 33
mangelhaft	2	32 – 27
mangelhaft minus	1	26 – 20
ungenügend	0	19 – 0

Name:	
-------	--


Abiturprüfung 2012

Mathematik, Grundkurs

Aufgabenstellung:

Die sogenannte Sonntagsfrage gibt an, mit welchen Prozentanteilen die einzelnen Parteien rechnen könnten, wenn diesen Sonntag Bundestagswahl wäre.

Bei der Sonntagsfrage des ZDF-Politbarometers vom 18. September 2009 ergab sich folgendes Stichprobenergebnis (befragt wurden 1352 zufällig ausgewählte Personen, repräsentativ für die wahlberechtigte Bevölkerung in Deutschland):

(Werte gerundet)

Quelle: http://politbarometer.zdf.de

Im Folgenden sollen die genannten Anteile auch als Wahrscheinlichkeiten verwendet werden.

Ministerium für Schule und Weiterbildung des Landes Nordrhein-Westfalen

M GK HT 6 CAS

Name:			

- a) Die Zufallsgröße X beschreibt die Anzahl der Wahlberechtigten, die die genannte Partei am auf die Umfrage folgenden Sonntag wählen würden.
 - (1) Berechnen Sie die Wahrscheinlichkeit, dass von 100 zufällig ausgewählten wahlberechtigten Bürgern mindestens 30 die SPD wählen würden.
 - (2) Berechnen Sie die Wahrscheinlichkeit, dass von 200 zufällig ausgewählten wahlberechtigten Bürgern mindestens 8 und höchstens 18 Personen die Grünen wählen würden.
 - (3) Bestimmen Sie die Anzahl der Personen, die man mindestens befragen muss, damit man mit einer Wahrscheinlichkeit von mindestens 90 % mindestens eine Person findet, die die CDU wählen würde.
 - (4) Ein Meinungsforschungsinstitut ermittelt seine Daten durch Telefonumfragen bei einer ausgewählten großen Anzahl von Personen, repräsentativ für die wahlberechtigte Bevölkerung in Deutschland. Ein Mitarbeiter befragt nacheinander sieben zufällig ausgewählte Personen dieses Personenkreises.
 - Ermitteln Sie die Wahrscheinlichkeit, dass sich genau drei Personen unter diesen sieben befinden, die die CDU wählen würden, und diese drei auch noch unmittelbar nacheinander befragt werden.

(16 Punkte)

Seite 2 von 10

b) Ein Wahlkampfmanager der Grünen gibt sich mit der alleinigen Nennung des Umfrageergebnisses von 10 % nicht zufrieden. Er möchte gerne die untere und obere Grenze des Intervalls angegeben bekommen, welches mit dem Umfrageergebnis verträglich ist.

Bestimmen Sie das 95 %-Konfidenzintervall für den unbekannten Anteil der Personen, die die Grünen wählen würden.

(10 Punkte)

Ministerium für Schule und Weiterbildung des Landes Nordrhein-Westfalen

M GK HT 6 CAS Seite 3 von 10

c) Neun Tage nach der obigen Umfrage vom 18. September 2009 fand am 27. September 2009 die letzte Bundestagswahl statt. Das tatsächliche Wahlergebnis der FDP betrug dann 14,6 %.

Jemand behauptet: "Das Wahlergebnis wird stark durch kurzentschlossene Wähler beeinflusst. Umfragewerte vor der Wahl haben daher wenig Aussagekraft bezüglich des tatsächlichen Wahlausgangs."

Prüfen Sie die Verträglichkeit des Umfrageergebnisses (13 %) mit dem tatsächlichen Wahlergebnis (14,6 %) und beurteilen Sie obige Behauptung bei einer Sicherheitswahrscheinlichkeit von 95 %.

(10 Punkte)

d) Es wird davon ausgegangen, dass der tatsächliche Wähleranteil p der Grünen größer als 0,1 ist.

Bestimmen Sie für einen Beispielwert p > 0,1 den Umfang der Stichprobe, der bei dieser Umfrage am 18. September 2009 mindestens nötig war, um das Wahlergebnis der Grünen am folgenden Sonntag mit einer Genauigkeit von +/-2 Prozentpunkten vorherzusagen (Sicherheitswahrscheinlichkeit 90 %).

Erklären Sie, welcher Zusammenhang zwischen der Breite des Konfidenzintervalls, der zugehörigen Sicherheitswahrscheinlichkeit und dem Stichprobenumfang besteht.

(14 Punkte)

Name:				
-------	--	--	--	--

Zugelassene Hilfsmittel:

- CAS (Computer-Algebra-System)
- Mathematische Formelsammlung
- Wörterbuch zur deutschen Rechtschreibung

Tabelle 1: σ -Regeln für Binomialverteilungen

Eine mit den Parametern n und p binomialverteilte Zufallsgröße X hat den Erwartungswert $\mu = n \cdot p$ und die Standardabweichung $\sigma = \sqrt{n \cdot p \cdot (1-p)}$. Wenn die Laplace-Bedingung $\sigma > 3$ erfüllt ist, gelten die σ -Regeln:

$P(\mu - \sigma < X < \mu + \sigma) \approx 0,683$	$P(\mu - 1,64\sigma < X < \mu + 1,64\sigma) \approx 0,90$
$P(\mu - 2\sigma < X < \mu + 2\sigma) \approx 0,954$	$P(\mu-1,96\sigma < X < \mu+1,96\sigma) \approx 0,95$
$P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0,997$	$P(\mu - 2,58\sigma < X < \mu + 2,58\sigma) \approx 0,99$

Tabelle 2: Kumulierte Binomialverteilung für n = 10 und n = 20

$$F(n; p; k) = B(n; p; 0) + \dots + B(n; p; k) = \binom{n}{0} p^{0} (1 - p)^{n-0} + \dots + \binom{n}{k} p^{k} (1 - p)^{n-k}$$

						p						
n	k	0,02	0,05	0,08	0,1	0,15	0,2	0,25	0,3	0,5		n
	0	0,8171	0,5987	0,4344	0,3487	0,1969	0,1074	0,0563	0,0282	0,0010	9	
	1	0,9838	0,9139	0,8121	0,7361	0,5443	0,3758	0,2440	0,1493	0,0107	8	
	2	0,9991	0,9885	0,9599	0,9298	0,8202	0,6778	0,5256	0,3828	0,0547	7	
	3		0,9990	0,9942	0,9872	0,9500	0,8791	0,7759	0,6496	0,1719	6	
10	4		0,9999	0,9994	0,9984	0,9901	0,9672	0,9219	0,8497	0,3770	5	10
	5				0,9999	0,9986	0,9936	0,9803	0,9527	0,6230	4	
	6					0,9999	0,9991	0,9965	0,9894	0,8281	3	
	7						0,9999	0,9996	0,9984	0,9453	2	
	8		Nicht	aufaofüh	rte Werte	cind (auf	4 Doz) 1	0000	0,9999	0,9893	1	
	9		INICIII	auigeiuii	ite weite	sina (aui	4 Dez.) 1	.,0000		0,9990	0	
	0	0,6676	0,3585	0,1887	0,1216	0,0388	0,0115	0,0032	0,0008	0,0000	19	
	1	0,9401	0,7358	0,5169	0,3917	0,1756	0,0692	0,0243	0,0076	0,0000	18	
	2	0,9929	0,9245	0,7879	0,6769	0,4049	0,2061	0,0913	0,0355	0,0002	17	
	3	0,9994	0,9841	0,9294	0,8670	0,6477	0,4114	0,2252	0,1071	0,0013	16	
	4		0,9974	0,9817	0,9568	0,8298	0,6296	0,4148	0,2375	0,0059	15	
	5		0,9997	0,9962	0,9887	0,9327	0,8042	0,6172	0,4164	0,0207	14	
	6			0,9994	0,9976	0,9781	0,9133	0,7858	0,6080	0,0577	13	
	7			0,9999	0,9996	0,9941	0,9679	0,8982	0,7723	0,1316	12	
20	8				0,9999	0,9987	0,9900	0,9591	0,8867	0,2517	11	20
	9					0,9998	0,9974	0,9861	0,9520	0,4119	10	
	10						0,9994	0,9961	0,9829	0,5881	9	
	11						0,9999	0,9991	0,9949	0,7483	8	
	12							0,9998	0,9987	0,8684	7	
	13								0,9997	0,9423	6	
	14									0,9793	5	
	15		Nicht	aufgefüh	rte Werte	sind (auf	4 Dez) 1	0000		0,9941	4	
	16		TAICH	aargerun	ic weite	ma (au	7 DC2.) 1	.,0000		0,9987	3	
	17									0,9998	2	
n		0,98	0,95	0,92	0,9	0,85	0,8	0,75	0,7	0,5	k	n
						р						

Bei grau unterlegtem Eingang, d. h. $p \ge 0.5$, gilt: F(n; p; k) = 1 – abgelesener Wert

Tabelle 3: Kumulierte Binomialverteilung für n = 50

$$F(n; p; k) = B(n; p; 0) + \dots + B(n; p; k) = \binom{n}{0} p^{0} (1 - p)^{n - 0} + \dots + \binom{n}{k} p^{k} (1 - p)^{n - k}$$

						р						
n	k	0,02	0,05	0,1	0,15	0,2	0,25	0,3	0,4	0,5		n
	0	0,3642	0,0769	0,0052	0,0003	0,0000	0,0000	0,0000	0,0000	0,0000	49	
	1	0,7358	0,2794	0,0338	0,0029	0,0002	0,0000	0,0000	0,0000	0,0000	48	
	2	0,9216	0,5405	0,1117	0,0142	0,0013	0,0001	0,0000	0,0000	0,0000	47	
	3	0,9822	0,7604	0,2503	0,0460	0,0057	0,0005	0,0000	0,0000	0,0000	46	
	4	0,9968	0,8964	0,4312	0,1121	0,0185	0,0021	0,0002	0,0000	0,0000	45	
	5	0,9995	0,9622	0,6161	0,2194	0,0480	0,0070	0,0007	0,0000	0,0000	44	
	6	0,9999	0,9882	0,7702	0,3613	0,1034	0,0194	0,0025	0,0000	0,0000	43	
	7		0,9968	0,8779	0,5188	0,1904	0,0453	0,0073	0,0001	0,0000	42	
	8		0,9992	0,9421	0,6681	0,3073	0,0916	0,0183	0,0002	0,0000	41	
	9		0,9998	0,9755	0,7911	0,4437	0,1637	0,0402	0,0008	0,0000	40	
	10			0,9906	0,8801	0,5836	0,2622	0,0789	0,0022	0,0000	39	
	11			0,9968	0,9372	0,7107	0,3816	0,1390	0,0057	0,0000	38	
	12			0,9990	0,9699	0,8139	0,5110	0,2229	0,0133	0,0002	37	
	13			0,9997	0,9868	0,8894	0,6370	0,3279	0,0280	0,0005	36	
	14			0,9999	0,9947	0,9393	0,7481	0,4468	0,0540	0,0013	35	
	15				0,9981	0,9692	0,8369	0,5692	0,0955	0,0033	34	
	16				0,9993	0,9856	0,9017	0,6839	0,1561	0,0077	33	
	17				0,9998	0,9937	0,9449	0,7822	0,2369	0,0164	32	
50	18				0,9999	0,9975	0,9713	0,8594	0,3356	0,0325	31	50
	19					0,9991	0,9861	0,9152	0,4465	0,0595	30	
	20					0,9997	0,9937	0,9522	0,5610	0,1013	29	
	21					0,9999	0,9974	0,9749	0,6701	0,1611	28	
	22						0,9990	0,9877	0,7660	0,2399	27	
	23						0,9996	0,9944	0,8438	0,3359	26	
	24						0,9999	0,9976	0,9022	0,4439	25	
	25							0,9991	0,9427	0,5561	24	
	26							0,9997	0,9686	0,6641	23	
	27							0,9999	0,9840	0,7601	22	
	28								0,9924	0,8389	21	
	29								0,9966	0,8987	20	
	30								0,9986	0,9405	19	
	31								0,9995	0,9675	18	
	32								0,9998	0,9836	17	
	33								0,9999	0,9923	16	
	34									0,9967	15	
	35		Nic	ht aufgefü	hrte Werte	sind (auf	4 Dez.) 1,0	000		0,9987	14	
	36									0,9995	13	
	37									0,9998	12	
n		0,98	0,95	0,9	0,85	0,8	0,75	0,7	0,6	0,5	k	n

Bei grau unterlegtem Eingang, d. h. $p \ge 0.5$, gilt: F(n; p; k) = 1 – abgelesener Wert

Tabelle 4: Kumulierte Binomialverteilung für n = 100

 $F(n; p; k) = B(n; p; 0) + \dots + B(n; p; k) = \binom{n}{0} p^{0} (1-p)^{n-0} + \dots + \binom{n}{k} p^{k} (1-p)^{n-k}$

					(0)		р	Ī						
n	k	0,02	0,05	0,08	0,1	0,15	1/6	0,2	0,25	0,3	0,4	0,5		n
	0	0,1326	0,0059	0,0002	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	99	
	1	0,4033	0,0371	0,0023	0,0003	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	98	
	2	0,6767	0,1183	0,0113	0,0019	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	97	
	3	0,8590	0,2578	0,0367	0,0078	0,0001	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	96	
	4	0,9492	0,4360	0,0903	0,0237	0,0004	0,0001	0,0000	0,0000	0,0000	0,0000	0,0000	95	
	5 6	0,9845 0,9959	0,6160 0,7660	0,1799 0,3032	0,0576 0,1172	0,0016 0,0047	0,0004 0,0013	0,0000 0,0001	0,0000 0,0000	0,0000 0,0000	0,0000 0,0000	0,0000 0,0000	94	
	7	0,9991	0,8720	0,3032	0,2061	0,0047	0,0013	0,0001	0,0000	0,0000	0,0000	0,0000	92	
	8	0,9998	0,9369	0,5926	0,3209	0,0275	0,0095	0,0009	0,0000	0,0000	0,0000	0,0000	91	
	9	-,	0,9718	0,7220	0,4513	0,0551	0,0213	0,0023	0,0000	0,0000	0,0000	0,0000	90	
	10		0,9885	0,8243	0,5832	0,0994	0,0427	0,0057	0,0001	0,0000	0,0000	0,0000	89	
	11		0,9957	0,8972	0,7030	0,1635	0,0777	0,0126	0,0004	0,0000	0,0000	0,0000	88	
	12		0,9985	0,9441	0,8018	0,2473	0,1297	0,0253	0,0010	0,0000	0,0000	0,0000	87	
	13		0,9995	0,9718	0,8761	0,3474	0,2000	0,0469	0,0025	0,0001	0,0000	0,0000	86	
	14 15		0,9999	0,9867 0,9942	0,9274 0,9601	0,4572 0,5683	0,2874 0,3877	0,0804 0,1285	0,0054 0,0111	0,0002 0,0004	0,0000 0,0000	0,0000 0,0000	85	
	16			0,9976	0,9001	0,6725	0,3677	0,1203	0,0111	0,0004	0,0000	0,0000	83	
	17			0,9991	0,9900	0,7633	0,5994	0,2712	0,0376	0,0022	0,0000	0,0000	82	
	18			0,9997	0,9954	0,8372	0,6965	0,3621	0,0630	0,0045	0,0000	0,0000	81	
	19			0,9999	0,9980	0,8935	0,7803	0,4602	0,0995	0,0089	0,0000	0,0000	80	
	20				0,9992	0,9337	0,8481	0,5595	0,1488	0,0165	0,0000	0,0000	79	
	21				0,9997	0,9607	0,8998	0,6540	0,2114	0,0288	0,0000	0,0000	78	
	22 23				0,9999	0,9779 0,9881	0,9369 0,9621	0,7389 0,8109	0,2864 0,3711	0,0479 0,0755	0,0001 0,0003	0,0000 0,0000	77 76	
	24					0,9839	0,9021	0,8686	0,3711	0,0733	0,0003	0,0000	75	
	25					0,9970	0,9881	0,9125	0,5535	0,1631	0,0012	0,0000	74	
	26					0,9986	0,9938	0,9442	0,6417	0,2244	0,0024	0,0000	73	
	27					0,9994	0,9969	0,9658	0,7224	0,2964	0,0046	0,0000	72	
	28					0,9997	0,9985	0,9800	0,7925	0,3768	0,0084	0,0000	71	
	29					0,9999	0,9993	0,9888	0,8505	0,4623	0,0148	0,0000	70	
	30						0,9997	0,9939	0,8962	0,5491	0,0248	0,0000	69	
	31 32						0,9999	0,9969 0,9984	0,9307 0,9554	0,6331 0,7107	0,0398 0,0615	0,0001 0,0002	68 67	
	33							0,9993	0,9334	0,7107	0,0013	0,0002	66	
100	34							0,9997	0,9836	0,8371	0,1303	0,0009	65	100
	35							0,9999	0,9906	0,8839	0,1795	0,0018	64	
	36							0,9999	0,9948	0,9201	0,2386	0,0033	63	
	37								0,9973	0,9470	0,3068	0,0060	62	
	38								0,9986	0,9660	0,3822	0,0105	61	
	39								0,9993	0,9790	0,4621	0,0176	60	
	40 41								0,9997 0,9999	0,9875 0,9928	0,5433 0,6225	0,0284 0,0443	59 58	
	42								0,9999	0,9960	0,6223	0,0666	57	
	43								0,0000	0,9979	0,7635	0,0967	56	
	44									0,9989	0,8211	0,1356	55	
	45									0,9995	0,8689	0,1841	54	
	46									0,9997	0,9070	0,2421	53	
	47									0,9999	0,9362	0,3086	52	
	48 49									0,9999	0,9577 0,9729	0,3822 0,4602	51 50	
	50										0,9832	0,5398	49	
	51										0,9900	0,6178	48	
	52										0,9942	0,6914	47	
	53										0,9968	0,7579	46	
	54										0,9983	0,8159	45	
	55										0,9991	0,8644	44	
	56										0,9996	0,9033	43	
	57 58										0,9998 0,9999	0,9334 0,9557	42 41	
	59										0,5555	0,9337	40	
	60											0,9824	39	
	61											0,9895	38	
	62											0,9940	37	
	63											0,9967	36	
	64											0,9982	35	
	65 66				Nicht aufge	eführte Werte	sind (auf 4 I	Dez.) 1,0000				0,9991	34	
	66											0,9996 0,9998	33 32	
	68											0,9998	31	
n		0,98	0,95	0,92	0,9	0,85	5/6	0,8	0,75	0,7	0,6	0,5	k	n
		,	,	,-				p			- /-	, -		

Tabelle 5: Kumulierte Binomialverteilung für n = 200

$$F(n; p; k) = B(n; p; 0) + ... + B(n; p; k) = {n \choose 0} p^{0} (1-p)^{n-0} + ... + {n \choose k} p^{k} (1-p)^{n-k}$$

				1	p				
n	k	0,02	0,04	0,05	0,1	1/6	0,2		n
	0	0,0176	0,0003	0,0000	0,0000	0,0000	0,0000	199	
	1	0,0894	0,0027	0,0004	0,0000	0,0000	0,0000	198	
	2	0,2351	0,0125	0,0023	0,0000	0,0000	0,0000	197	
	3	0,4315	0,0395	0,0090	0,0000	0,0000	0,0000	196	
	4	0,6288	0,0950	0,0264	0,0000	0,0000	0,0000	195	
	5	0,7867	0,1856	0,0623	0,0000	0,0000	0,0000	194	
	6 7	0,8914 0,9507	0,3084 0,4501	0,1237 0,2133	0,0001 0,0005	0,0000 0,0000	0,0000 0,0000	193 192	
	8	0,9307	0,5926	0,2133	0,0003	0,0000	0,0000	191	
	9	0,9925	0,7192	0,3270	0,0014	0,0000	0,0000	190	
	10	0,9975	0,8200	0,5831	0,0081	0,0000	0,0000	189	
	11	0,9992	0,8925	0,6998	0,0168	0,0000	0,0000	188	
	12	0,9998	0,9401	0,7965	0,0320	0,0000	0,0000	187	
	13	0,9999	0,9688	0,8701	0,0566	0,0000	0,000	186	
	14		0,9848	0,9219	0,0929	0,0000	0,0000	185	
	15		0,9930	0,9556	0,1431	0,0001	0,0000	184	
	16		0,9970	0,9762	0,2075	0,0003	0,0000	183	
	17		0,9988	0,9879	0,2849	0,0006	0,0000	182	
	18		0,9995	0,9942	0,3724	0,0013	0,0000	181	
	19		0,9998	0,9973	0,4655	0,0027	0,0000	180	
	20 21		0,9999	0,9988	0,5592	0,0052	0,0001	179 178	
	22			0,9995 0,9998	0,6484 0,7290	0,0094 0,0163	0,0002 0,0005	178	
	23			0,9999	0,7290	0,0163	0,0003	176	
	24			0,3333	0,8551	0,0203	0,0010	175	
	25				0,8995	0,0648	0,0036	174	
	26				0,9328	0,0945	0,0064	173	
	27				0,9566	0,1329	0,0110	172	
	28				0,9729	0,1803	0,0179	171	
	29				0,9837	0,2366	0,0283	170	
	30				0,9905	0,3007	0,0430	169	
200	31				0,9946	0,3711	0,0632	168	200
	32				0,9971	0,4454	0,0899	167	
	33				0,9985	0,5210	0,1239	166	
	34				0,9992	0,5953	0,1656	165	
	35				0,9996	0,6658	0,2151	164	
	36 37				0,9998 0,9999	0,7305 0,7877	0,2717 0,3345	163 162	
	38				0,9999	0,7877	0,3343	162	
	39					0,8777	0,4718	160	
	40					0,9106	0,5422	159	
	41					0,9362	0,6108	158	
	42					0,9556	0,6758	157	
	43					0,9699	0,7355	156	
	44					0,9801	0,7887	155	
	45					0,9872	0,8349	154	
	46					0,9919	0,8738	153	
	47					0,9950	0,9056	152	
	48					0,9970	0,9310	151	
	49					0,9983	0,9506	150	
	50					0,9990 0,9995	0,9655 0,9764	149 148	
	51 52					0,9997	0,9843	147	
	53					0,9998	0,9897	146	
	54					0,9999	0,9934	145	
	55					0,0000	0,9959	144	
	56						0,9975	143	
	57						0,9985	142	
	58						0,9991	141	
	59	1					0,9995	140	
	60	Nicht	aufgeführte M	Jerte sind (auf .	4 Dezimalen) 1,	0000	0,9997	139	
	61	INICIIC	aargerunite W	eric sinu (aut '	- Deamaich I,	0000	0,9998	138	
	62						0,9999	137	
n		0,98	0,96	0,95	0,9	5/6	0,8	k	n
					p				

Bei grau unterlegtem Eingang, d. h. $p \ge 0.5$, gilt: F(n; p; k) = 1 – abgelesener Wert

Tabelle 6: Kumulierte Binomialverteilung für n = 1000

$$F(n; p; k) = B(n; p; 0) + ... + B(n; p; k) = {n \choose 0} p^{0} (1-p)^{n-0} + ... + {n \choose k} p^{k} (1-p)^{n-k}$$

					р					
n	k	0,01	0,015	0,02	0,025	0,03	0,035	0,04		n
	0	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	999	
	1	0,0005	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	998	
	2	0,0027	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	997	
	3	0,0101	0,0002	0,0000	0,0000	0,0000	0,0000	0,0000	996	
	4	0,0287	0,0008	0,0000	0,0000	0,0000	0,0000	0,0000	995	
	5	0,0661	0,0026	0,0001	0,0000	0,0000	0,0000	0,0000	994	
	6 7	0,1289	0,0073	0,0002	0,0000	0,0000	0,0000	0,0000	993	
	8	0,2189 0,3317	0,0174 0,0364	0,0007 0,0019	0,0000 0,0001	0,0000 0,0000	0,0000 0,0000	0,0000 0,0000	992 991	
	9	0,3517	0,0304	0,0019	0,0001	0,0000	0,0000	0,0000	990	
	10	0,5830	0,0004	0,0102	0,0002	0,0000	0,0000	0,0000	989	
	11	0,6974	0,1828	0,0204	0,0013	0,0001	0,0000	0,0000	988	
	12	0,7925	0,2657	0,0376	0,0029	0,0001	0,0000	0,0000	987	
	13	0,8656	0,3618	0,0642	0,0060	0,0003	0,0000	0,0000	986	
	14	0,9176	0,4649	0,1025	0,0116	0,0008	0,0000	0,0000	985	
	15	0,9521	0,5681	0,1539	0,0211	0,0017	0,0001	0,0000	984	
	16	0,9736	0,6649	0,2185	0,0360	0,0035	0,0002	0,0000	983	
	17	0,9862	0,7501	0,2947	0,0582	0,0066	0,0005	0,0000	982	
	18	0,9931	0,8211	0,3797	0,0893	0,0119	0,0010	0,0001	981	
	19	0,9967	0,8769	0,4694	0,1304	0,0204	0,0020	0,0001	980	
	20	0,9985	0,9186	0,5591	0,1822	0,0333	0,0038	0,0003	979	
	21	0,9993	0,9482	0,6446	0,2442	0,0519	0,0068	0,0006	978	
	22 23	0,9997 0,9999	0,9683 0,9813	0,7222 0,7895	0,3149 0,3919	0,0774 0,1110	0,0116 0,0191	0,0012 0,0022	977 976	
	24	0,9999	0,9813	0,7695	0,3919	0,1110	0,0191	0,0022	975	
	25		0,9894	0,8455	0,4724	0,1334	0,0302	0,0039	973	
	26		0,9969	0,9242	0,6304	0.2637	0,0670	0,0110	973	
	27		0,9984	0,9493	0,7020	0,3299	0,0948	0,0175	972	
	28		0,9992	0,9671	0,7658	0,4009	0,1299	0,0270	971	
	29		0,9996	0,9793	0,8207	0,4746	0,1725	0,0402	970	
	30		0,9998	0,9874	0,8662	0,5484	0,2225	0,0580	969	
	31		0,9999	0,9925	0,9027	0,6197	0,2793	0,0812	968	
	32			0,9957	0,9311	0,6866	0,3416	0,1105	967	
	33			0,9976	0,9524	0,7472	0,4079	0,1463	966	
1000	34			0,9987	0,9680	0,8005	0,4763	0,1887	965	100
	35			0,9993	0,9790	0,8461	0,5448	0,2374	964	
	36			0,9996	0,9865	0,8838	0,6114	0,2919	963	
	37			0,9998	0,9916	0,9142	0,6743	0,3511	962	
	38			0,9999	0,9949	0,9381	0,7321	0,4135	961	
	39 40				0,9969 0,9982	0,9563 0,9698	0,7839 0,8289	0,4777 0,5419	960 959	
	41				0,9982	0,9096	0,8672	0,6046	958	
	42				0,9994	0,9865	0,8989	0,6642	957	
	43				0,9997	0,9912	0,9246	0,7196	956	
	44				0,9998	0,9944	0,9448	0,7698	955	
	45				0,9999	0,9965	0,9603	0,8142	954	
	46					0,9979	0,9721	0,8526	953	
	47					0,9987	0,9807	0,8851	952	
	48					0,9993	0,9869	0,9119	951	
	49					0,9996	0,9913	0,9337	950	
	50					0,9998	0,9943	0,9509	949	
	51					0,9999	0,9964	0,9643	948	
	52					0,9999	0,9977	0,9745	947	
	53						0,9986	0,9821	946	
	54						0,9991	0,9876	945	
	55						0,9995	0,9916	944	
	56						0,9997	0,9944	943	
	57 58						0,9998 0,9999	0,9963 0,9976	942 941	
	59						0,9999	0,9976	941	
	60						0,5555	0,9963	939	
	61							0,9994	938	
	62							0,9996	937	
	63				*.*		0000	0,9998	936	
	64		Nich	t autgeführte	Werte sind (a	nut 4 Dez.) 1,	0000	0,9999	935	
	65							0,9999	934	
		0,99	0,985	0,98	0,975	0,97	0,965	0,96	k	n

Bei grau unterlegtem Eingang, d. h. $p \ge 0.5$ gilt: F(n; p; k) = 1 – abgelesener Wert

Tabelle 7: Normalverteilung

$$\phi(z) = 0,...$$

$$\phi(-z) = 1 - \phi(z)$$

Z	0	1	2	3	4	5	6	7	8	9
0,0	5000	5040	5080	5120	5160	5199	5239	5279	5319	5359
0,1	5398	5438	5478	5517	5557	5596	5636	5675	5714	5753
0,2	5793	5832	5871	5910	5948	5987	6026	6064	6103	6141
0,3	6179	6217	6255	6293	6331	6368	6406	6443	6480	6517
0,4	6554	6591	6628	6664	6700	6736	6772	6808	6844	6879
0,5	6915	6950	6985	7019	7054	7088	7123	7157	7190	7224
0,6	7257	7291	7324	7357	7389	7422	7454	7486	7517	7549
0,7	7580	7611	7642	7673	7704	7734	7764	7794	7823	7852
0,8	7881	7910	7939	7967	7995	8023	8051	8078	8106	8133
0,9	8159	8186	8212	8238	8264	8289	8315	8340	8365	8389
1,0	8413	8438	8461	8485	8508	8531	8554	8577	8599	8621
1,1	8643	8665	8686	8708	8729	8749	8770	8790	8810	8830
1,2	8849	8869	8888	8907	8925	8944	8962	8980	8997	9015
1,3	9032	9049	9066	9082	9099	9115	9131	9147	9162	9177
1,4	9192	9207	9222	9236	9251	9265	9279	9292	9306	9319
1,5	9332	9345	9357	9370	9382	9394	9406	9418	9429	9441
1,6	9452	9463	9474	9484	9495	9505	9515	9525	9535	9545
1,7	9554	9564	9573	9582	9591	9599	9608	9616	9625	9633
1,8	9641	9649	9656	9664	9671	9678	9686	9693	9699	9706
1,9	9713	9719	9726	9732	9738	9744	9750	9756	9761	9767
2,0	9772	9778	9783	9788	9793	9798	9803	9808	9812	9817
2,1	9821	9826	9830	9834	9838	9842	9846	9850	9854	9857
2,2	9861	9864	9868	9871	9875	9878	9881	9884	9887	9890
2,3	9893	9896	9898	9901	9904	9906	9909	9911	9913	9916
2,4	9918	9920	9922	9925	9927	9929	9931	9932	9934	9936
2,5	9938	9940	9941	9943	9945	9946	9948	9949	9951	9952
2,6	9953	9955	9956	9957	9959	9960	9961	9962	9963	9964
2,7	9965	9966	9967	9968	9969	9970	9971	9972	9973	9974
2,8	9974	9975	9976	9977	9977	9978	9979	9979	9980	9981
2,9	9981	9982	9982	9983	9984	9984	9985	9985	9986	9986
3,0	9987	9987	9987	9988	9988	9989	9989	9989	9990	9990
3,1	9990	9991	9991	9991	9992	9992	9992	9992	9993	9993
3,2	9993	9993	9994	9994	9994	9994	9994	9995	9995	9995
3,3	9995	9995	9995	9996	9996	9996	9996	9996	9996	9997
3,4	9997	9997	9997	9997	9997	9997	9997	9997	9997	9998
3,5	9998	9998	9998	9998	9998	9998	9998	9998	9998	9998
3,6	9998	9998	9999	9999	9999	9999	9999	9999	9999	9999
3,7	9999	9999	9999	9999	9999	9999	9999	9999	9999	9999
3,8	9999	9999	9999	9999	9999	9999	9999	9999	9999	9999

Beispiele für den Gebrauch:

$$\phi(2,32) = 0,9898$$

$$\phi(-0,9) = 1 - \phi(0,9) = 0,1841$$

$$\phi(z) = 0,994 \Rightarrow z = 2,51$$

Unterlagen für die Lehrkraft

Abiturprüfung 2012

Mathematik, Grundkurs

1. Aufgabenart

Stochastik mit Alternative 2 (Schätzen von Parametern für binomialverteilte Zufallsgrößen)

2. Aufgabenstellung¹

siehe Prüfungsaufgabe

3. Materialgrundlage

entfällt

4. Bezüge zu den Vorgaben 2012

- 1. Inhaltliche Schwerpunkte
 - Wahrscheinlichkeit, bedingte Wahrscheinlichkeit, Unabhängigkeit
 - Binomialverteilung einschließlich Erwartungswert und Standardabweichung Alternative 2:
 - Schätzen von Parametern für binomialverteilte Zufallsgrößen
- 2. Medien/Materialien
 - entfällt

5. Zugelassene Hilfsmittel

- CAS (Computer-Algebra-System)
- Mathematische Formelsammlung
- Wörterbuch zur deutschen Rechtschreibung

Die Aufgabenstellung deckt inhaltlich alle drei Anforderungsbereiche ab.

6. Vorgaben für die Bewertung der Schülerleistungen

6.1 Modelllösungen

Modelllösung a)

(1) Es ist günstig, die Zufallsgröße X als binomialverteilt anzunehmen mit n=100 und p=0,25.

$$P(X \ge 30) = 1 - P(X \le 29) \approx 1 - 0.8505 = 0.1495$$

(2) Es ist günstig, die Zufallsgröße X als binomialverteilt anzunehmen mit n = 200 und p = 0,1.

$$P(8 \le X \le 18) = P(X \le 18) - P(X \le 7) \approx 0.3724 - 0.0005 = 0.3719$$

(3) *n* ist so zu bestimmen, dass

$$P(X \ge 1) \ge 0.9 \Leftrightarrow 1 - P(X = 0) \ge 0.9$$
$$\Leftrightarrow P(X = 0) \le 0.1$$
$$\Leftrightarrow 0.64^{n} \le 0.1$$
$$\Leftrightarrow n \ge \frac{\ln 0.1}{\ln 0.64} \approx 5.16$$

$$\Rightarrow n \ge 6$$

Es müssen mindestens 6 Personen befragt werden.

(4) Es gibt 5 Möglichkeiten für die 3 Personen, die die CDU wählen würden, in einer Reihe von 7 Personen genau nacheinander angerufen zu werden (1-2-3; 2-3-4; ...; 5-6-7). Die gesuchte Wahrscheinlichkeit beträgt also

$$p = 5 \cdot 0,36^3 \cdot 0,64^4 = 0,0391$$
.

Modelllösung b)

Die Zufallsgröße X beschreibt die Anzahl der Wahlberechtigten, die am nächsten Sonntag die Grünen wählen würden. Dann ist es günstig, X als binomialverteilt anzunehmen mit n=1352 und unbekannter Trefferwahrscheinlichkeit p. Aus dem Umfrageergebnis erhält man gerundet: $\frac{X}{1352}=0,1$. Der folgende Ansatz führt dann zur Ermittlung des gesuchten

Konfidenzintervalls:

$$\left| \frac{X}{n} - p \right| \le z \cdot \frac{\sqrt{n \cdot p \cdot (1 - p)}}{n} \Leftrightarrow \left| 0, 1 - p \right| \le 1,96 \cdot \frac{\sqrt{1352 \cdot p \cdot (1 - p)}}{1352}$$
$$\Leftrightarrow (0, 1 - p)^2 \le \frac{1,96^2}{1352} (p - p^2)$$
$$\Leftrightarrow 1,00284 p^2 - 0,20284 p + 0,01 \le 0$$

Die Grenzen erhält man durch Lösen der zugehörigen quadratischen Gleichung: $p_1 \approx 0,0851$, $p_2 \approx 0,1171$.

Das Konfidenzintervall lautet [0,0851; 0,1171].

Modelllösung c)

Die Zufallsgröße *X* beschreibt die Anzahl der Wahlberechtigten, die am nächsten Sonntag die FDP wählen würden.

Gesucht sind die Anteile X/1352, die noch verträglich sind mit dem Wahlergebnis von p = 0,146. Bei einer Sicherheitswahrscheinlichkeit von 95 % führt der folgende Ansatz zur Ermittlung des gesuchten Anteils:

$$\left| \frac{X}{1352} - 0.146 \right| \le 1.96 \cdot \sqrt{\frac{0.146 \cdot (1 - 0.146)}{1352}}$$
.

Durch Auflösen des Betrags erhält man gerundet:

$$0,146-1,96\cdot\sqrt{0,000092} \le \frac{X}{1352} \le 0,146+1,96\cdot\sqrt{0,000092}.$$

Gerundet ergibt dies:

$$0,1272 \le \frac{X}{1352} \le 0,1648$$
.

Verträglich mit dem Ergebnis der Bundestagswahl ist somit das Intervall [0,1272;0,1648]. Damit weicht das Umfrageergebnis der FDP nicht signifikant vom Wahlergebnis ab. Die Behauptung wird daher nicht bestätigt. Bei dem Umfrageergebnis von 13 % (= 0,13) kann es sich um eine zufällige Abweichung nach unten handeln. Die Kurzentschlossenheit der Wähler muss nicht die Ursache sein.

Modelllösung d)

Für die Fehlerbereiche gilt folgender Zusammenhang:

$$\left| \frac{X}{n} - p \right| \le z \cdot \sqrt{\frac{p \cdot (1-p)}{n}} \le \varepsilon$$
, wobei hier für den Fehlerbereich $\varepsilon = 0.02$ gilt.

Bei einem Umfragewert von ca. 10 % rechnet man mit einem p > 0,1.

Z. B. für
$$p = 0.15$$
 gilt (mit $z = 1.64$):

$$1,64 \cdot \sqrt{\frac{0,15 \cdot (1-0,15)}{n}} \le 0,02$$
; daraus folgt $n \ge 857,31$.

Demnach sollten mindestens 858 Personen befragt werden.

Rechnet man mit einem anderen p, z. B. p = 0.5, so ergibt sich (mit z = 1.64):

$$1,64 \cdot \sqrt{\frac{0,5 \cdot (1-0,5)}{n}} \le 0,02$$
; daraus folgt $n \ge 1681$.

Demnach sollten mindestens 1681 Personen befragt werden.

[Die volle Punktzahl sollte für jedes gewählte p mit 0,1 erteilt werden.]

Die Breite des Konfidenzintervalls hängt von der Sicherheitswahrscheinlichkeit und dem Stichprobenumfang ab. Sie kann verringert werden, wenn bei gegebenem Stichprobenumfang die Sicherheitswahrscheinlichkeit herabgesetzt wird oder wenn man bei gegebener Sicherheitswahrscheinlichkeit den Stichprobenumfang erhöht.

6.2 Teilleistungen – Kriterien

Teilaufgabe a)

	Anforderungen			
	Der Prüfling	Punktzahl		
1	(1) berechnet $P(X \ge 30)$.	3		
2	(2) berechnet $P(8 \le X \le 18)$.	3		
3	(3) beschreibt einen geeigneten Lösungsansatz und bestimmt den minimalen Wert für n .	6		
4	(4) ermittelt die gesuchte Wahrscheinlichkeit.	4		
Der gewählte Lösungsansatz und -weg muss nicht identisch mit dem der Modelllösung sein. Sachlich richtige Alternativen werden an dieser Stelle mit entsprechender Punktzahl bewertet.				

Teilaufgabe b)

	Anforderungen	maximal erreichbare Punktzahl				
	Der Prüfling					
1	bestimmt einen Ansatz zur Berechnung des Konfidenzintervalls.	5				
2	ermittelt die Grenzen des Konfidenzintervalls und gibt das Konfidenzintervall an.	5				
Der gewählte Lösungsansatz und -weg muss nicht identisch mit dem der Modelllösung sein. Sachlich richtige Alternativen werden an dieser Stelle mit entsprechender Punktzahl bewertet.						

Teilaufgabe c)

	Anforderungen			
	Der Prüfling	Punktzahl		
1	ermittelt einen Ansatz für die Bestimmung der 95 %-Umgebung.	4		
2	bestimmt das gesuchte Intervall.	2		
3	prüft, ob das Umfrageergebnis mit dem Wahlergebnis verträglich ist, und beurteilt die Behauptung.	4		
Der gewählte Lösungsansatz und -weg muss nicht identisch mit dem der Modelllösung sein. Sachlich richtige Alternativen werden an dieser Stelle mit entsprechender Punktzahl bewertet.				

Teilaufgabe d)

	Anforderungen Der Prüfling				
1	ermittelt einen Ansatz für die Bestimmung der Stichprobengröße.	4			
2	bestimmt die gesuchte Stichprobengröße.	4			
3	erklärt den Zusammenhang zwischen Breite des Konfidenzintervalls, Sicherheitswahrscheinlichkeit und Stichprobenumfang.	6			
	Der gewählte Lösungsansatz und -weg muss nicht identisch mit dem der Modelllösung sein. Sachlich richtige Alternativen werden an dieser Stelle mit entsprechender Punktzahl bewertet.				

7.	Bewertungsbogen	zur Prüfungsar	beit

Name des Prüflings:	Kursbezeichnung:
Schule:	

Teilaufgabe a)

	Anforderungen	Lösungsqualität				
	Der Prüfling	maximal erreichbare Punktzahl	EK ²	ZK	DK	
1	(1) berechnet $P(X \ge 30)$.	3				
2	(2) berechnet $P(8 \le X \le 18)$.	3				
3	(3) beschreibt einen geeigneten	6				
4	(4) ermittelt die gesuchte	4				
sachl	ch richtige Alternativen: (16)					
	Summe Teilaufgabe a)	16	·			

Teilaufgabe b)

	Anforderungen	Lösungsqualität				
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK	
1	bestimmt einen Ansatz	5				
2	ermittelt die Grenzen	5				
sachlich richtige Alternativen: (10)						
	Summe Teilaufgabe b)	10				

² EK = Erstkorrektur; ZK = Zweitkorrektur; DK = Drittkorrektur

Teilaufgabe c)

	Anforderungen	Lösungsqualität				
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK	
1	ermittelt einen Ansatz	4				
2	bestimmt das gesuchte	2				
3	prüft, ob das	4				
sachl	sachlich richtige Alternativen: (10)					
	Summe Teilaufgabe c)	10				

Teilaufgabe d)

	Anforderungen	Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK
1	ermittelt einen Ansatz	4			
2	bestimmt die gesuchte	4			
3	erklärt den Zusammenhang	6			
sachl	sachlich richtige Alternativen: (14)				
	Summe Teilaufgabe d)	14			

Summe insgesamt	50		

Festlegung der Gesamtnote (Bitte nur bei der letzten bearbeiteten Aufgabe ausfüllen.)

	Lösungsqualität			
	maximal erreichbare Punktzahl	EK	ZK	DK
Übertrag der Punktsumme aus der ersten bearbeiteten Aufgabe	50			
Übertrag der Punktsumme aus der zweiten bearbeiteten Aufgabe	50			
Punktzahl der gesamten Prüfungsleistung				
aus der Punktsumme resultierende Note				
Note ggf. unter Absenkung um ein bis zwei Notenpunkte gemäß § 13 Abs. 2 APO-GOSt				
Paraphe				

M GK HT 6 CAS Seite 8 von 8

ggf. arithmetisches Mittel der Punktsummen aus EK und ZK:	-	
ggf. arithmetisches Mittel der Notenurteile aus EK und ZK:	_	
Die Klausur wird abschließend mit der Note:	. (Punkte) bewertet.
Unterschrift, Datum		

Grundsätze für die Bewertung (Notenfindung)

Für die Zuordnung der Notenstufen zu den Punktzahlen ist folgende Tabelle zu verwenden:

Note	Punkte	Erreichte Punktzahl
sehr gut plus	15	100 – 95
sehr gut	14	94 – 90
sehr gut minus	13	89 – 85
gut plus	12	84 – 80
gut	11	79 – 75
gut minus	10	74 – 70
befriedigend plus	9	69 – 65
befriedigend	8	64 – 60
befriedigend minus	7	59 – 55
ausreichend plus	6	54 – 50
ausreichend	5	49 – 45
ausreichend minus	4	44 – 39
mangelhaft plus	3	38 – 33
mangelhaft	2	32 – 27
mangelhaft minus	1	26 – 20
ungenügend	0	19 – 0